
Reinforcement Learning

Marshal Sinaga - marshal.sinaga@aalto.fi

2024-11-05

This note aims to cover some materials on the reinforcement learning. The
primary references are Reinforcement Learning: An Introduction (2nd edition)
by Sutton & Barto and ELEC-E8125 by Joni Pajarinen.

1 Overview

• Reinforcement learning (RL) problem:

– Denote that π : O → A is a policy that maps the observation to an
action.

– Determine a policy:

a = π(s) (1)

– s.t. the expected cumulative return is maximum, i.e.,

π∗ = arg maxπE[G] (2)

G =
∑
t

rt (3)

• Markov decision process (MDP):

– We have an environment observable z = s, defined by a Markov
dynamics defined as:

p(st+1|st, at) (4)

and a reward function

rt = r(st, at) (5)

– The solution is formulated as follows:

a∗1,...,T = arg maxa1,...,aT

T∑
t=1

rt (6)

Represented as policy:

a = π(s) (7)

1

http://incompleteideas.net/book/the-book-2nd.html

• Connection between RL and MDP: RL is a MDP with unknown Markov
dynamics p(st+1|st, at), and unknown reward function rt.

• Partially observable MDP (POMDP):

– The environment is not directly observable.

– Following MDP, POMDP is governed by a Markov dynamics p(st+1|st, at)
and reward function rt = r(st, at). In addition, we have an observa-
tion model p(zt+1|st+1, at).

2 Solving discrete MDP

• Markov property: future is independent of past conditioned on the present,
i.e.,

p(st+1|st) = p(st+1|s1, . . . , st) (8)

• Markov process: a random process that generates a state sequences S,
following the Markov property. Markov process is defined as a tuple (S, T),
where T : S × S → [0, 1] denotes the state transition function.

• Markov reward process: defined by a tuple (S, T, r, γ):

– S, T follows Markov process

– r : S → R denotes the reward function

– γ ∈ [0, 1] denotes the discount factor

– Accumulate reward in H horizon step (can be infinite):

Gt =

H∑
k=0

γkrt+k (9)

• State value function:

V (s) = E[Gt|st = s] (10)

= E[rt + γV (st+1)|st = s] (11)

• MDP: defined by a tuple (S,A, T,R, γ)

– S, γ follows Markov reward process

– A denotes set of actions

– T : S ×A× S → [0, 1]

– R : S ×A → R denotes the reward function

– Goal: Find the policy π(s) that maximizes V (s)

• Policy:

– Deterministic: π(s) : S → A
– Stochastic: π(a|s) → [0, 1], i.e., distribution over actions.

2

• MDP value function:

Vπ(s) = Eπ[Gt|st = s] (12)

= Eπ[rt + γVπ(st+1)|st = s] (13)

= r(s, π(s)) + γ
∑
s′

T (s, π(s), s′)Vπ(s
′) (14)

• Action-value function:

Qπ(s, a) = Eπ[rt + γQπ(st+1, at+1|st = s, at = a)] (15)

= r(s, a) + γ
∑
s′

T (s, a, s′)Qπ(s
′, π(s′)) (16)

• Optimal value function:

V ∗(s) = max
π

Vπ(s) (17)

Q∗(s, a) = max
π

Qπ(s, a) (18)

• Optimal policy:

π∗(s) = argmaxaEs′ [r(s, a) + γV ∗(s′)] (19)

= argmaxa(r(s, a) + γ
∑
s′

T (s, a, s′)V ∗(s′)) (20)

• Iterative policy evaluation

– Problem: Evaluate the value of policy π

– Solution: Iterate Bellman expectation backs-up:

V1 → · · · → Vπ

– Apply synchronous back-ups:

∗ For all s, update Vk+1(s) from Vk(s
′)

∗ Repeat

Vk+1(s) = r(s, π(s)) + γ
∑
s′

T (s, π(s), s′)Vk(s
′) (21)

=
∑
a

π(a|s)(r(s, a) + γ
∑
s′

T (s, a, s′)Vk(s
′)) (22)

• Time complexity of value iteration:

– Complexity O(|A||S|2) per iteration.
– Complexity when applied to action-value function: O(|A|2|S|2) per

iteration.

3

3 RL in discrete domains

• Monte-Carlo policy evaluation

– Complete episodes give samples of return G.

– Learn the value of a particular policy from episodes under that policy.

– Estimate value as an empirical mean return:

N(s) = N(s) + 1 S(s) = S(s) +Gt V (s) ≈ S(s)/N(s) (23)

• Temporal difference: for each state transition, update a guess towards a
guess:

V (st) = V (st) + α(rt + γV (st+1)− V (st)) (24)

• λ-return:

– Combine returns in different horizons:

Gλ
t = (1− λ)

∞∑
k=0

λkGk
t (25)

– State value function update (TD(λ)):

V (st) = V (st) + α(Gλ
t − V (st)) (26)

• Backward-TD(λ):

– Extend TD time horizon with decay λ

– After episode, update

V (s) = V (s) + αEt(s)(rt + γV (st+1)− V (st)) (27)

Et(s) = γλEt−1(s) + 1(st = s) (28)

• SARSA:

– Apply TD to Q(s, a)

Q(s, a) = Q(s, a) + α(r + γQ(s′, a′)−Q(s, a)) (29)

• SARSA(λ):

– Apply TD(λ) to Q(s, a)

– Backward SARSA(λ)

Et(s, a) = γλEt−1(s, a) + 1(st = s, at = a) (30)

Q(s, a) = Q(s, a) + αEt(s, a)(rt + γQ(st+1, at+1)−Q(st, at)) (31)

• Q-learning:

Q(s, a) = Q(s, a) + α(r + γmax
a′

Q(s′, a′)−Q(s, a)) (32)

4

4 Optimal Control Problems

• Optimal control optimization (deterministic) objective:

min
a1...aT

∑
t

c(st, at)s.t.st+1 = f(st, at) (33)

• Reparameterize:

min
a1...aT

c(s1, a1) + c(f(s1, a1), a2) + · · ·+ c(f(f(. . .)), aT) (34)

• Linear quadratic regulator (LQR) problem definition:

f(st, at) =
(
At Bt

)(st
at

)
+ ft = Ft

(
st
at

)
+ ft (35)

ct(st, at) =
1

2

(
st
at

)
Ct

(
st
at

)
+

(
st
at

)
ct (36)

where

Ct =

(
Cst,st Cst,at

Cat,st Cat,at

)
and ct =

(
cst
cat

)
(37)

• Action value function:

Q(sT , aT) = const +
1

2

(
sT
aT

)
CT

(
sT
aT

)
+

(
sT
aT

)⊤

cT (38)

∇atQ(sT , aT) = CsT ,aT
= CaT ,sT + CaT ,aT

at + cat = 0 (39)

aT = −C−1
aT ,aT

(Cat,stst+) (40)

• Given the above action-value function, we find that the solution of Equa-
tion 34 can be written as follows:

aT = KT sT + kT (41)

KT = −C−1
aT ,aT

Cat,st (42)

kT = −CaT ,aT
cat

(43)

• State-value function by substitution:

V (sT) = const +
1

2

(
sT

KT sT + kT

)
CT

(
sT

KT sT + kT

)
+

(
sT

KT sT + kT

)⊤

cT

(44)

. It is quadratic in sT

• Reparameterize:

Qt = Ct + F⊤
t Vt+1Ft (45)

qt = ct + F⊤
t Vt+1ft + F⊤

t vt+1 (46)

5

• The fact that ∇at
Q(st, at) = Qat,st + Qat,at

at + q⊤t = 0 provides the
following solutions:

at = Ktst + kt (47)

Kt = −Q−1
at,at

Qat,st (48)

kt = −Qat, at
−1qat (49)

• LQR algorithm

– Backward recursion:
For t = T down to 1:

∗ Qt = Ct + F⊤
t Vt+1Ft

∗ qt = ct + F⊤
t Vt+1ft + F⊤

t vt+1

∗ Kt = −Q−1
at,at

Qat,st

∗ kt = −Q−1
at,at

qat

∗ Vt = Qst,st +Qst,atKt +K⊤
t Qat,st +K⊤

t Qat,atKt

∗ vt = qst +Qst,atkt +K⊤
t qat +K⊤

t Qat,atkt

– Forward recursion:
For t = 1 to T:

∗ at = Ktst + kt
∗ st+1 = f(st, at)

• LQR with stochastic dynamics:

f(st, at) = Ft

(
st
at

)
+ ft + wt wt ∼ N (0,Σt) (50)

p(st+1|st, at) ∼ N
(
Ft

(
st
at

)
+ ft,Σt

)
(51)

• Solving non-linear systems with LQR:
Approximate a non-linear system as linear-quadratic:

f(st, at) ≈ f(ŝt, ât) +∇st,at
f(ŝt, ât)

(
st − ŝt
at − ât

)
(52)

ct(st, at) ≈ c(ŝt, ât) +
1

2

(
st − ŝt
at − ât

)
∇2

st,at
c(ŝt, ât)

(
st − ŝt
at − ât

)
(53)

+∇st,at
c(ŝt, ât)

(
st − ŝt
at − ât

)
(54)

5 Policy Gradient

• Update policy parameters:

θm+1 = θm + αm∇θR|θ=θm s.t.

∞∑
m=0

αm = ∞
∞∑

m=0

α2
m < ∞ (55)

where

R(θ) = E

[
T∑

t=0

γtrt

]
(56)

6

• Likelihood-ratio approach:
Assume each trajectory τ is generated by a roll-out, thus

τ ∼ pθ(τ) = p(τ |θ) R(τ) =

H∑
t=0

γtrt (57)

Expected return:

R(θ) = Eτ [R(τ)] =

∫
pθ(τ)R(τ)dτ (58)

Gradient:

∇θR(θ) =

∫
∇θpθ(τ)R(τ)dτ (59)

=

∫
pθ(τ)∇θ log pθ(τ)R(τ)dτ (60)

= Eτ [∇θ log pθ(τ)R(τ)] (61)

• Monte Carlo policy gradient → REINFORCE

1. Perform J episodes i = 1, . . . , J

2. Estimate gradient gREINFORCE = Eτ [(∇θ log πθ(at|st))R(i)]

≈ 1
J

∑J
i=1

[(
∇θ log πθ(a

[i]
t |s[i]t)

)
(
∑

t γ
trt,i)

]
3. Update policy and repeat with new trials until convergence.

• Decreasing variance by adding baseline:

∇θR(θ) = Eτ [∇θ log pθ(τ)(R(τ)− b)] = Eτ [∇θ log pθ(τ)R(τ)] (62)

• It does not cause bias since

Eτ [∇θ log pθ(τ)b] =

∫
pθ(τ)∇θ log pθ(τ)bdτ (63)∫

∇θpθ(τ)bdτ = b∇θ

∫
pθ(τ)dτ = b∇θ1 = 0 (64)

• Episodic REINFORCE with optimal baseline
Optimal baseline for episodic REINFORCE (minimize variance of estima-
tor):

bh =
Eτ

[(∑H
t=0 ∇θh log πθ(at|st)2Rτ

)]
Eτ [
∑H

t=0(∇θh log πθ(at|st))2]
(65)

• 1. Perform J trials i = 1, . . . , J :

2. For each gradient element h:
Estimate optimal baseline bh

Estimate gradient gh = 1
J

∑J
i=1

[
(
∑H

t=0 ∇θh log πθ(a
[i]
t |s[i]t))(R(i)− b

[i]
h)
]

7

3. Repeat until convergence

• Off-policy policy gradient: optimize Eτ∼πθ(τ)[R(τ)] using samples from
π′(τ).

• Importance sampling: Eτ∼πθ(τ)[R(τ)] = Eτ∼pi′(τ)[
πθ(τ)
π′(τ)R(τ)]

πθ(τ)

π′(τ)
=

p(s0)
∏H

t=0 p(st+1|st, at)πθ(at|st)
p(s0)

∏H
t=0 p(st+1|st, at)π′(at|st)

=

∏H
t=0 πθ(at|st)∏H
t=0 pi

′(at|st)
(66)

• The gradient:

∇θEτ∼π′(τ)

[
πθ(τ)

π′(τ)R(τ)

]
= Eτ∼π′(τ)[

∇θπθ(τ)

π′(τ)
R(τ)] (67)

= Eτ∼π′(τ)

[(∏
t

πθ(at|st)
π′(at|st)

)(∑
t

∇θ log πθ(at|st)

)(∑
t

γtrt

)]
(68)

6 Exploration and Exploitation

• Greedy approach in multi-armed bandit:

a∗ = argmaxa∈AQ(a) (69)

Q(a) =
1

N(a)

N(a)∑
n=1

rn(a) (70)

• Hoeffding’s inequality: Given random variablesX1, . . . , XM ∈ [0, 1], where

X̄M = 1
M

∑M
m=1 Xm, it holds that P(E[X] > X̄M + u) ≤ exp(−2Mu2)

• Applying Hoeffding’s inequality on a bandit action a:

P(E[Q(a)] > Q(a) + U(a)) ≤ exp(−2N(a)U2(a)) (71)

• Limit probability of true value to exceed upper bound:

P(E[Q(a)] > Q(a) + U(a)) ≤ exp(−2N(a)U2(a)) = p

→ U(a) =
√

−1/2 log p/N(a) (72)

• Setting p = N−4 yields:

Q̂(a) = Q(a) +
√

2 logN/N(a) (73)

• Thompson sampling: taking action a∗ ∈ A according to the probability
that it maximizes the expected reward; a∗ is chosen with a probability∫

I[E[r|a∗, x, θ] = max
a∗

E[r|a′, x, θ]]p(θ|D)dθ, (74)

where θ denotes the reward’s parameters.

8

	Overview
	Solving discrete MDP
	RL in discrete domains
	Optimal Control Problems
	Policy Gradient
	Exploration and Exploitation

