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This note aims to cover a few examples of probabilistic machine-learning
methods. The primary references are Bayesian Reasoning and Machine Learning
by David Barber and CS-E4820 by Pekka Martinen. Ideally, this note will be
updated regularly until April 16, 2024.

1 Variational Bayes for Simple Model

Suppose we have N independent observations x = (x1,--+ ,zy) from a two-
component mixture of univariate Gaussian distributions.

p(znld) = (1 —7)N(2,|0,1) + 7N (2,]0,1) (1)

that is with probability 1 — 7 the observation x, is generated from the first
component N (x,|0,1), and with probability 7 from the second component
N(x,]0,1). The model [I| has two unknown parameters (7,6), the mixture coef-
ficient and the mean of the second component.

The goal is to carry out a full Bayesian analysis via mean-field variational
Bayesian approximation. We place the following priors on the unknown param-
eters.

T ~ Beta(ag, ap)
0~ N0 5"

We formulate the model using latent variables z = (z1, - - - , zn), which explicitly
specify the component responsible for generating observation x,. In detail,

on = (2n1, 20) T = (1,0)1 Tn %s from N(z,]0,1)
’ (0,1)"  x, is from N(z,|0,1)

and place a prior on the latent variables

N
— H Tznz(l _ T)Z"I
n=1

The likelihood in the latent variable model is given by

2

p(x|z,0) = [ N(xal0,1)* N(2,]0,1)"

n=1


http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/200620.pdf

The joint distribution of all observed (x) and unobserved variables (z, T, 0)
factories as follows

p(x,2,7,0) = p(T)p(0)p(z|T)p(x|2, 0)

and the log joint distribution can correspondingly written as

logp(x,2,7,0) = log p(7) + log p(0) + log p(z|7) + log p(x|z, )
We approximate the posterior distribution p(z, 7, 8|x) using the factorized vari-
ational distribution ¢(z)q(0)q(0)
Update factor ¢(z) To compute the updated distribution ¢*(z), we first

compute the expectation of the log of the joint distribution over all other un-
knowns in the model.

log q*(z) = Er p[log p(x, 2,7, 0)]
= E,[logp(z|7) + Eg[log p(x|z, 0)]] + const

N
= ET[Z Zn210g T 4 zp1log(1 — 7)) + E9[Z Zn1log N(2,]0,1) + zp2 log N (2,10, 1)] + const

n=1 n=1
N N
= Z znoEr[log 7] + 21 E-[log(1 — 7)] + Z zn110g N (2,|0,1) + zp2Eg[log N(x,,|0,1)] + const
n=1 n=1

N
1 1
Zn1 (ET[log(l —7)]— 3 log 27 — xi) + Z Zn2 < [logT] — = log 27 — *EQ[( 9)2]> + const
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2n1 108 prn1 + 2n2 10g pno + const (2)
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Where we have defined p,1 and p, for all n as follows

1 1
log pn1 = E,[log(1 —7)] — 3 log 27 — ix% (3)
1 1
log pn2 = E.[log 7] — 3 log 2 — iEg[(m" —0)?] (4)

By exponentiating both sides of Equation [2] we obtain

o= I i

n=1 k=1

which can be normalized to make a proper distribution

N 2
* _ Znk
¢*(z) =[] [T ri
n=1k=1
where p
nk
Tnk P}



Note that computing r,; requires E, [log 7], E,[log(1 — 7)], and Eg[(z,, — 0)?],
where the expectations are computed over the distribution ¢(7) and ¢(6), which
will be derived next.

Update factor ¢(7)

log q* (1) = Bz e[log p(x, 2, 7,0)]
= log p(7) + E,[log p(z|7)] 4+ const

N
=logp(T) + Z E., [zn2]logT + E. [241]log(1l — 7) + const

n=1

N
= logp(T) + Z Tn2log T + 1p1 log(1l — 7) + const

n=1
N
=log 7! +log(1 — 1)~ ! 4 Z log 72 +log(1 — 7)™ + const  (5)
n=1
= log 7 n=1 Tnatao—1 +log(1 — T)Z'J’:;l rmiteo—l 4 congt (6)

We exponentiate and recognize the exponentiated form as
q* (1) = Beta(r|Na + ap, N1 + ap)

We exponentiate and recognize the exponentiated form as
q* (1) = Beta(r|N2 + ap, N1 + ap)

i.e., 7 has Beta(a,b) with a = N3+ ag and b = Nj + g, where N = 25:1 Tk
for k = 1, 2. Using this distribution, we get the following formulas for the terms
required when updating ¢(z)

E;[log 7] = (N2 + ap) — (N1 + N2 + 2a0) (7)
E-log(1 —7)] = (N1 + ao) — (N1 + N2 + 2a9) (8)
where 1 is the digamma function. Formulas above follow from the basic property

of Beta distribution and the fact that if 7 ~ Beta(a,b) then 1 — 7 ~ Beta(b, a)
Update factor ¢(6)



log q* (0) = ]ET,Z [lOg p(X, z,T, 9)]
= logp(0) + E,[log p(x|z, 0)] + const

N
nz::l Znl (—;ﬁL) + Zna (—;(xn — 9)2>

1 1 Boge > L o 1 2
=-3 log By~ — 39 + Z E. [zn1] ~5%n +E., [2n2] *i(ﬂfn —0)° ] + const
n=1

1
:—Elogﬁgl—%W—ﬁ—Ez + const

1 3 ol 1 1
=3 log Byt — ?092 + ;rm <2xi> + T (2(xn — 9)2> + const

N
B T
e ; —=5 (ah — 2200 + 6%) + const
1 al al >
_ ((5 .S ) 4> et 20y ) + const
n=1 n=1 n=1

Bo + EN Tn2 1 N ’
= 2":1 ~ (0 - Z rngxn> + const (9)

ﬂO + 27]:,:1 ™2 p—1
Again, we exponentiate both sides of 0] and recognize this as
¢*(0) = N(6lm2, 5y ") (10)

with
Bo=fo+ Ny and mg =y Noiy

where we have defined
1N
T2 = E nz::l Tn2Tn
We can use the distribution [10]to compute Eg[(z,, —6)?], needed when updating
q(z):
Eg[(xn — 0)?] = Bg[(xn — ma + ma — 0)?]
= (zy, —m2)? 4 2(x,, — Mm2)E[my — 0] + E[(m2 — 0)?]
= (xn —m2)® + B3 (11)
The overall VB algorithm is obtained by cycling through updating:
e The responsibilities r,; using formulas
e The terms 11| needed when computing the responsibilities

e The term [7] and [§ needed when computing the responsibilities



2 Derivation of ELBO for the Simple Model

Recall that variational inference is based on the decomposition.

log p(z) = L(q) + KL[q|p]

where ¢(Z) is any approximation to the posterior distribution p(Z|X) of the
unobserved variables Z in the model, given the observed variables X. The goal
of the variational inference algorithm is to maximize the evidence lower bound
(ELBO) L(q), or equivalently minimize the KL-divergence KL[q|p] between the
approximation and the true posterior. Here, we show how to compute the ELBO
for the ”simple model” derived earlier. Briefly, the model is

p(z,|0,7) = (1 — 7)N(2,|0,1) + TN(z,|0,1) n=1,--- N

The latent variable representation is given by

N
X|Z 9 = H .’En|0 1 ZﬂlN(xn|9 1)2772 (12)
n=1
and
N
p(z|r) = [[ 721 =) (13)
n=1

Priors are specified as follows

p(7) = Beta(r|ag, Bo) oc 711 — )01
p(0) = N(9|0,50_1) X exp <ﬂ2092>
The logarithm of the joint distribution can be written as:

logp(x,2,7,0) = logp(T) + logp(0) + log p(z|7) + log p(x[z,0)  (14)

We assume the mean-field approximation.
p(z, T, 0|x) =~ q(T Hq Zn) (15)

Assume that currently, we have factors.

q(zn|Tn1,mn2) = Categorical (zy|rp1, rng) = rojtros? (16)
q(1) = Beta(t|a-, B;) (17)
q(0) = N(8|ms, B3 ") (18)
where r1, 7o, m =1,--- , N, a,, B, Mo, B2 are so-called variational parameters,

i.e., parameters that specify the exact distribution of the factor. The general
formula of ELBO is given by



0= [a@) 1z

=E,[ logp(X Z)] Eflog ¢(Z)] (19)

where Z is a generic notation that includes all unobservables. We then rewrite
ELBO as follows:

L(q) = Eq(r)q(0)q(z) 108 (%, 2, T, 0)] — Eq(7)4(0)q(2) [l0g ¢(T)q(0)q(2)]

[
= Ey(r)q(0)q(z)[log p(7) + log p(0) + log p(z|T) + log p(x|z, 0)]
= Eg(r)q(0)q(2) [l0g a(7) + log q(9) + log ¢(2)]
= Eq()[logp(7)] + Eq(e) [log p(6) + Eq(r)q(z)[log p(2|T)] + Eq(z)q(6) [log p(x|2, 0)
— Eq(n)[log q(z)] — Ey(r)[log Q(T)] Eq(0)[log ¢(0)] (20)

As with the simple model, all seven terms in formula can be computed
analytically when conjugate priors are used. Below, we consider each of these
terms. The ELBO can be computed simply by plugging each derived term into
Equation [20] In these derivations, we will occasionally discard some terms that
do not depend on the variational parameters, as our purpose of deriving the
ELBO is to monitor the convergence of the VB algorithm, and those terms are
constant across the iterations.
1st term in Equation

Eq(r)[logp(7)] = Eq(r)[(a0 — 1) log 7 + (a0 — 1) log(1 — 7)]
= (Oéo - I)Eq(ﬂ [log T] + (Ot() - ]-)]Eq(‘r) [log(l — 7')]
= (a0 = D[y (ar) = y(ar + B7)] + (a0 = D¥(Br) — vlar + 6-)]

2nd term in Equation

3rd term in Equation



N
Z Eq(r)q(z) l0g P(20|T)]

n=1

IEq(‘r)q(z) [1ng(Z|7')]

Eq(r)q(zn)[2n210g T 4 251 log(1 — 7))]

I
M=

1

3
I

I
M=

]Eq(zn) [ZnQ]Eq(T) [log T] =+ Eq(zn) [an]Eq(T) [10g(1 — T)]
1

3
I

I
] =

rn2[w<a7) - w(ar + ﬁr)] + Tnl[’(/}(ﬂ‘r) - dj(a‘r + B‘r)]

n=1

4th term in Equation

M=

Zn Zn
Eq(z)q0)[logp(x]z,0)] = ¥ Eq..)q00) {*f(log 2m 4 22) — 72(1055 21 + (25 — 9)2)}

Il
_

n

I
M=

1
*Eq(zn)[znl}Eq(Q) |:2(10g 2 +l‘,27,):| *]Eq(zn)[zng]E ) |: (log 27T+( 0)2)

3
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—_

I
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Mz

1 1 1
71 log 2m — 3 ; rmxfb —-3 nz::l Tno log 2w — 3 ; rn2Eq(0) [(zn — 9)2]

3
I
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N N
1 1
(rn1 +7n2) log 2 — 5 Z Iy = o Z P2 (Eqgo)[(@n — 0)]% + Viz, — 0])

I
l\Dl\’—‘
M=

3
Il
—
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l\?"—‘
NE

('rnl + Tn2) log 2w — ~ Z Tnl-r -5 Z Tn2 IEq(@) [6>])2 + V[e])

n=1

I
—

:—% 277 ——Zrnlx —ernz —mz +651)

5th term in Equation

IEq(z log q Z E an lOg Tn1 + Zn2 log rn2]
N
= Z Tn1 IOg Tl + Th2 IOg Tn2
n=1

6th term in Equation

Eyrllog ¢(7)] = log m T (ar = D(ay) + (Br — DW(Br) — (ar + Br — 2)b(ar + Br)

This is just the negative entropy of Beta(a., ;)



7th term in Equation
By the definition of the negative entropy of normal distribution, we obtain

Ey o) log q(60)] = — log(2ref; )

3 Variational Bayes for a Factor Analysis

The data set consists of D-dimensional vectors x,, € R”, forn =1,..., N. We
model the data using factor analysis with K-dimensional factors z, € R¥. In
detail, the model is specified as follows:

X, ~ Np(Waz,, diag(y))™), n=1,...,N,
g ~ Gamma(a,b), d=1,...,D,

wg ~ Ng(0,0I), d=1,...,D,

Zn ~Ng(0,I), n=1,...,N.

Here, W is a D x K factor loading matrix and wy is the dth row of W written
as a column vector. Parameter wd_l is the variance for the dth dimension in
the observed data and diag(v) denotes a diagonal matrix with elements ¢ =
(¥1,...,%p)T on the diagonal.

We approximate the posterior p(¢, Z, W|X) using the mean-field approxi-
mation:

D N D
9(©) = [T atwa) [T a(z) [T a(wa)-
d=1 n=1 d=1

The goal is deriving the update factor ¢(z,) and q(wy), respectively. Initially,
write the logarithm of the joint distribution, logp(v, Z, W, X) as follows:

log p(¢, Z, W, X) =1log p(X|W, Z,v) + log p(W) + log p(Z) + log p())

N D N D
= logp(x|W, 2, 90) + Y _logp(wa) + Y logp(z,) + Y _ loga

n=1 d=1 n=1 d=1

Update factor ¢(z,)



log ¢*(zn) = Ew z,,, w[log p(xn|W, 2y, 1) + log p(zn )] + const
= Ew ¢[log p(x,|W, z,, V)] + log p(z,,) + const

1 1
= Ew7¢[—§(xn — Wzn)Tdiag(d))(xn —Wgz,)] — §Z1Zn + const

1 1
= ]Ew,w[—g (x,, diag(¥)x,, + z, W' diag(y)) Wz, — 2z W diag(y)x,,) — 2zIzn] + const
1 .
~3 (Ew ,y[z, (W diag())W + I)z,,) — 2By [z, W diag(1)x,)]) + const
1
5 (=

DN | =

/N\/_\
S -

w
(Z Ey[ta)Bw[wawg ] + I) z, — 2z, Ew[W]'E, [diag(zb)]xn) + const

D
Z Ya)(waw, ) + I) Zn — 22 <WT>d1ag(<w))xn> + const

=1

Let

D -1

K, = <Z<wd><wwl )+ I)

d=1

fin = (W ") diag((¢))xn

By completing the square, we obtain
* _ 1 ~ T —1 ~
log g (Zn) D) (Zn - Km“n) K, (Zn - Knﬂn)

It implies that ¢*(z,) = N (2| pin, Ky) with g, = K, fi,.

Update factor g(wg)



Let

' N
) =Bz.w 0 | Y 10gp(xn|W, 2z, 1)

+ log p(wy) + const

N D
1 1
=Ezw v Z Z g(xnd — W, Zn) Va(Xnd — w;zn)l — —w, Wq + const

2c

N
1 1
=Ezw. .0 Z _i(XZd Vd Xnd + 20 Waha W Zn — 22, Wa g xnd)] - %W;Wd + const

n=1

2«

N
1 1
=Ezw, .0 Z §(ZTWd Va Wy Zn — 22, Watha Xnd)‘| — —w, Wy + const

r N N
1 1
3 (w;lr ( Z I) W — QW;r Yq Z znxnd>1 — %W;Wd + const
L n=1 n=1
r N N
( ( Z zl— + a—lI> W — 2w;lr Pq Z znxnd> + const
L n=1 n=1

N N
T (]Ew [ Z Ez [zn z,l—] + a—11> Wg— 2w, Ey [14] Z Ez [z,] Xnd> + const
N N n=1
i <<1/)d> > (zaz)) + 0411) Wi — 2w, (Ya) Y (2n xnd> + const
n=1

N 1
Kq= (Z@/fd)(ZnZD + a11>
N

ﬂd = Z(%ﬁ <Zn>xnd

n=1

By completing the square, we obtain

* 1 ~ — ~
log ¢* (Wa) = —= (wq — Kafia) K7 (wg — Ko i)

2

It implies that ¢*(wgq) = N (wq|pa, Ka) with pg = Kgjig.

4 Bayesian Linear Regression with Stochastic
Variational Inference

The model is defined as follows:

yi ~ N(wg +wizs,07), 2 €R oy =04,i=1,...,N
w ~ N(0,0°]).

10



Given data D = {(z;,v:)};, we are interested in the posterior distribution
p(w|D) which we approximate using mean-field approximation:

1

p(w|D) ~ q(w) = [] a(wa) = [ N(walpa, o3)

d=0 d=0

That is, we model each wg as an independent Gaussian with mean pg and 02
and use SVI to optimize them such that:

5 = argmin, KL{g(w)lp(w]D)] (21)
= argminy Eq, (w) [~ log p(D|w)] + KL [g(w)|p(w)] +c. (22)

Loss=—ELBO

Here, the variational parameters are denoted by A = {(uq4,04),4 = 0,1}. The
first term of the ELBO is the expected log-likelihood, which will be estimated
using a pathwise estimator, and the second term is the KL between the approx-
imate posterior ¢g\(w) and the prior p(w) that can be derived analytically in
this case.

4.1 Negative Log-likelihood

N

—logp(D|w) = —log [ | p(ys|zi, w, o7)
=1
N

= - Zlogp(yi|xi,W, 0-12)
=1

1 N

= ﬁ Z (yi — (wrx; + wo))2 + const
i=1

Let MSE defined as follows

N
1
MSE = ; (yi — (w1 + wo))?
Thus, we are able to rewrite — log p(D|w) as

N
—logp(Dw) = ﬁMSE + const
i

11



4.2 Deriving KL-divergence

KL [g(W)lp(w)] = gy |18 50 | = By loga(w) o (o)

> log q(wa) — Zp(wd)]
d=0

=Eq(w)

d=0

|
B

Eq(w)llog ¢(wa)] — Ep(w)[log p(wa)]

(Y
Il

0

[

Eq(wa)[log q(wa)] — Ep(w,) [log p(wa)]

d=0

I
MH

—-H (wd)(wd) Hp(wd)(wd)

l\.’)\)—l ﬁ~
M-

og (2mea?) — log(2mea?)

with Hy(y,) and Hp,,) denote the entropy w.r.t g(wq) and p(wq), respectively.

5 D-separation

5.1 Example 1

F—() (o
e

List all pairs of variables that are d-separated in the DAG in Figure above; for
each pair of d-separated variables, give one set that d-separates those variables.

12



air | condition
NO
{B}
NO
{B}
{B, D}
NO
{A}
NO
{A, C}
{B}
NO
NO
{B}
NO
{B, C}

THEOoHEHORHEHOQHO@OOQ®

HEODQQAQWE I T = = =y

5.2 Example 2

e Are the following statements true or false for the graph in the figure above?

1. C and G are d-separated by {B; D}.
True; C-B-E-G (non-collider B), C-D-E-G (non-collider D), C-D-F-
E-G (non-collider D)

2. A and C are d-separated by ()
True; A-B-C (collider C), A-B-E-D-C (collider E), A-B-E-F-D-C (col-
lider E),

3. A and D are d-separated by {B}.
False; A-B-C-D (non collider C or collider B)

13



6 Expectation-Maximization Algorithm

Consider a simple factor analysis model:
Xp ~ No(wzp,0%I), n=1,---,N
Zn NN(051)7n: la 7N

with x,, € R? and z, € R for n = 1,--- , N. Parameters are the weight matrix
w € R? and the variance 02 € R.

e Derive and simplify the complete data log-likelihood

N N
log p(x, 21w, 0%) = log [ | p(xn: zalw,0%) = 3 log p(xn, 20|w, 0%)

n=1 n=1

N
= Z log N (x,|wWzy,,0%I) + log N(z,]0,1)

n=1

N
1
—3 <Z 2logo? + (W2, — X)) 0 21(Wzp — Xp) + zi) + const

n=1
e Derive the posterior p(z,|x,, wq, 03)

p(zn‘x’rm WOa 0-8) X p(Xn|Zn, WO’ O.g)p(zn)

1 _ 1
o exp (2(W0zn —x,) 02 (Woz, — xn)> exp (2,22)

1
o< exp (—2 ( wg 0 2 Iwoz, — 2%, 0y 2wz, + %, 04 2 I%, + zi))

1
X exp (—2 (0™ 2wg wo + 1)z2 — 20_2X;Lrwozn)>

Let

—2. T
m =0, Wy wo+1

—2. T
by, = o0y “x,, Wo

Then p(2,,|Xn, Wo,08) = N (2, |m™1b,,m™1)
e Derive the QQ function needed in the E-step of the EM algorithm.
Q(Wa 027 Wo, 08) = Ez|x,w0,o’g [1ng(X, Z|W7 02)]

N
1
= E. |x,wo,02 ~5 Z 2logo? + (072w 'w +1)22 — 20 2x wz, + 07 %x x,

n=1
|
=3 Z 2logo? + (U_QWTW + 1)E[2] — QU_QXIWE[ZTL] + O'_QX,IXTL
n=1
| N
=3 Z 2logo? + (0 2w w+ 1) (m™t +m~ %) — 20 %x) wm b, + 07 x, x,
n=1

14



e Maximize Q(w, 0%, wy, 08) with respect to w and o2 in M-step of the EM
algorithm.

1. Optimum weight w*

N
1
~3 Z o 2(m™ +m 722w — 20 %x,m b, =0

2. Optimum variance o7

dQ
0
do
Y4
Z — 203w w(m ™ +m7202) + 40 3%, wm T, — 2073x ) x,,
o
n=1
5 (Zg_l —w w(m™t +m™262) + 2x wm™1b, —X;L'—xn>
g, =
* 2N

7 Laplace approximation of posterior distribu-
tion

e For any posterior p(w|D), it holds that
p(w|D) e exp(—E(w)), E(w) = —logp(w|D)

e Approximate E(w) by second-order Taylor polynomial E(w) at the min-
imum w 1
E(w) = E(W) + §(W —w) Hg(w — W)

e Obtain Gaussian approximation ¢(w|D):

p(w|D) = q(w|D) ox exp(—E(w))

15
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