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Abstract—The presence of mutual information in the research
of deep learning has grown significantly. It has been proven
that mutual information can be a good objective function to
build a robust deep learning model. Most of the researches
utilize estimation methods to approximate the true mutual
information. This technical report delivers an extensive study
about definitions as well as properties of mutual information.
This article then delivers some reviews and current drawbacks
of mutual information estimation methods afterward.
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I. INTRODUCTION

Mutual information (MI) is viewed as one of the most
fundamental measurements to quantify the dependence of
two random variables [1]. Evidently, mutual information has
been applied in wide spectrums, including statistics [1]–[3],
biostatistics [1], [4], [5], robotics [1], [6], [7], and machine
learning [8], [9]. This shows that mutual information can
capture the notion of dependence on nature universally.

For machine learning applications (especially deep learn-
ing), MI is used as an objective function or a regularizer in
loss function [1]. The objective function is either maximizing
the MI or minimizing the MI. MI maximization is applied
in various tasks, including representation learning [1], [9],
[14], generative models [1], [8], and reinforcement learning
[1], [15]. Meanwhile, MI minimization has taken parts in
disentangled representation learning, style transfer [1], [11],
and information bottleneck [1], [12].

Almost all MI maximization or MI minimization do not use
the exact MI but rather compute the estimation. This due to
the required closed form of the density function and tractable
log-density ratio between the joint distribution and the product
of marginal distribution [1]. In the real world, it is not
always possible to have all access to the required distributions.
Commonly, we only have samples from the joint distribution
[1]. Therefore, the estimation methods are proposed to solve
the problems. Info-GAN for example is using Barber-Agakov
lower bound [13] to estimate the mutual information between
the latent factor and the generated images [8]. Another ex-
ample is the contrastive predictive model, which uses noise
contrastive estimation to estimate mutual information between
the current context and the data at the time steps ahead [16].
Mutual information estimation is currently active research in
machine learning and still opens a huge possibility to improve.

This article aims to deliver a theoretical study about mutual
information. Especially, the article focus on discussing MI
from an information theory perspective. Aside from that, the
article also reviews some MI estimation methods. The article is
represented as follows. In the beginning, the article discusses
the background of this article. The preliminaries section helps
the reader to understand the basic concepts of information
theory. The MI: definitions and properties section is divided
into several subsections. The first subsection talks about the
definition of mutual information in general. The rest of the
subsections talk about the properties of MI, including the
convexity and continuity of MI, the consequences of Jensen
inequality for MI, the relations between MI and conditional
independence distribution, geometric interpretation of MI, and
variational form of MI. The MI: estimation methods section
delivers a review of several mutual information methods and
their current drawbacks.

II. PRELIMINARIES

Sufficient knowledge about entropy and divergence is
needed to have a better understanding of mutual information.

A. Entropy

Entropy can be viewed as a tool to measure the uncertainty
of random variable (RV) [17]. Let X be a discrete random
variable on space X with distribution PX . Also, let x ∈ X be
an element from space X .The entropy of X can be written as:

H(X) = −E [logPX(x)]

= −
∑
x∈X

PX(x) logPX(x)

Note that the equation is also hold for continuous random
variable. The logarithm term in the equation uses either base
2 (bit) or base e (nat) [17]. Furthermore, it is easy to see that
H(X) ≥ 0 is satisfied since 0 ≥ PX(x) ≥ 1.

Entropy can also be used to measure the uncertainty for
more than 1 random variable. Let Y be another discrete
random variable on space Y with distribution PY . At first, we



review joint entropy between random variables X and Y . Joint
entropy H(X,Y ) with a joint distribution PX,Y is defined by:

H(X,Y ) = −E [logPX,Y (x, y)]

= −
∑
x∈X

∑
y∈Y

PX,Y (x, y) logPX,Y (x, y)

Then, we define conditional entropy of X given Y with
conditional distribution PX|Y as:

H(X|Y ) = Ey∈Y
[
H(PX|Y=y)

]
= −E

[
logPX|Y (x|y)

]
= −

∑
y∈Y

PY (y)
∑
x∈X

PX|Y (x|y) logPX|Y (x|y)

= −
∑
y∈Y

∑
x∈X

PX,Y (x, y) logPX|Y (x|y)

The conditioning impacts on the reduction on entropy means
that H(X) ≥ H(X|Y ) [17]. We discuss about this inequality
in the later section.

Joint entropy H(X,Y ) can be derived from marginal en-
tropy H(X) and conditional entropy H(Y |X).

Theorem II.1. Both H(X,Y ) and H(X|Y ) derive chain rule
property written as:

H(X,Y ) = H(X) +H(Y |X) ≤ H(X) +H(Y )

Note that the inequality holds from the conditioning of
H(Y |X). We also can extend the relations for more than two
random variables as we call conditional joint entropy. Let us
specify another random variable Z on space Z . We can write
conditional joint entropy H(X,Y |Z) as:

H(X,Y |Z) = H(X|Z) +H(Y |X,Z) ≤ H(X) +H(Y )

with the inequality H(Y |X,Z) ≤ H(Y ) holds for the equa-
tion.

B. Divergence

Divergence (also known as Kullback-Leibler (KL) diver-
gence or relative entropy) is a measurement of the distance
between two distributions over a random variable [18]. We al-
ready specified random variable X on space X and distribution
PX . Then, let QX be another distribution function quantifying
RV X . KL-Divergence between PX and QX is defined by:

DKL(PX ||QX) = E
[
log

PX(x)

QX(x)

]
=
∑
x∈X

PX(x) log
PX(x)

QX(x)
(discrete)

=

∫
PX(x) log

PX(x)

QX(x)
dx (continuous)

There are two constraints for the above definitions:
• 0. log 0

0 = 0
• ∃x : QX(x) = 0 and PX(x) > 0 =⇒
DKL(PX ||QX) =∞

Note that KL divergence is not symmetric means
DKL(PX ||QX) 6= DKL(QX ||PX). Furthermore, we

can also extend KL-divergence into conditional case where
probability function PX is given. In particular, KL-divergence
between PY |X and QY |X (not symmetric) given PX can be
written by:

DKL(PY |X ||QY |X |PX) = EPX

[
D(PY |X=x||QY |X=x)

]
=
∑
x∈X

PX(x)D(PY |X=x||QY |X=x) (disc.)

=

∫
PX(x)D(PY |X=x||QY |X=x)dx (cont.)

Evidently, KL divergence is a special case of f -divergence
[18]. With PX � QX , f -divergence is defined by:

Df(PX ||QX) = EQX

[
f
(
dPX
dQX

)]
=
∑
x∈X

QX(x) f
(
PX(x)

QX(x)

)
(discrete)

=

∫
QX(x) f

(
PX(x)

QX(x)

)
dx (continuous)

Using the definition above, we can rewrite DKL(PX ||QX) as:

Df(PX ||QX) = EPX

[
log

PX
QX

]
= EQX

[
PX
QX

log
PX
QX

]

with f (PX/Qx) = PX/QX logPX/QX . Another
case of f -divergence including Jensen-Shannon
divergence (JS(PX ||QX) = DKL(PX ||(PX +
QX)/2) + DKL(QX ||(PX + QX)/2)), total variation
(T (PX , QX) = 1/2 EQX

[|PX/QX − 1|]), etc [18].

III. MUTUAL INFORMATION : DEFINITIONS AND
PROPERTIES

A. General Definition of Mutual Information

We have discussed entropy in the previous section. We then
define mutual information (MI) which quantifies the amount
of information of a particular random variable given another
random variable [17], [19]. Given joint probability PX,Y and
marginal probability PX & PY , mutual information between
random variable X and Y is written by:

I(X;Y ) = EPX,Y
log

PX,Y (x, y)

PX(x)PY (y)
(1)

= D(PY |X ||PY |PX) (2)
= D(PX|Y ||PX |PY ) (3)
= DKL(PX,Y (x, y)||PX(x)PY (y)) (4)

=
∑
x∈X

∑
y∈Y

PX,Y (x, y) log
PX,Y (x, y)

PX(x)PY (y)
(5)

Following the same constraint as entropy, MI can also be
applied to a continuous random variable [17]. In contrast
to KL-divergence which is not symmetric, MI results in
symmetric form means that I(X;Y ) = I(Y ;X).



Fig. 1. Venn diagram that shows the relationship between RV X and Y .
Observe that MI between X and Y is lied on the intersection between
marginal entropy H(X) and H(Y ) [17].

In the previous section we already elaborate the entropy
of joint distribution and conditional distribution as well. Ev-
idently, those entropies have relationship with mutual infor-
mation. Figure 1 shows the relationship between two random
variables from information theory perspective. From the figure,
we can derive the definition of mutual information I(X;Y )
in term of H(X), H(Y ), H(X,Y ), H(Y |X), and H(X|Y ).

Theorem III.1.

I(X;Y ) = H(X)−H(X|Y ) (6)
= H(Y )−H(Y |X) (7)
= H(X) +H(Y )−H(X,Y ) (8)

Observe that I(X;X) = H(X) for discrete RV (since
H(X,X) = H(X)), otherwise it results ∞. We also can use
the entropy to define the conditional mutual information. In
particular, conditional MI of RV X and Y given Z is defined
by:

I(X;Y |Z) = H(X|Z)−H(X|Y,Z) (9)

= EPX,Y,Z
log

PX,Y |Z(x, y|z)
PX|Z(x|z)PY |Z(y|z)

(10)

. Mutual information also satisfied a chain rule theorem.

Theorem III.2.

I(X1, ..., Xn;Y ) =
∑

I(Xi;Y |Xi−1, ..., X1) (11)

We have discuss about the definition of MI in term of
entropy and KL-divergence as well. In the next sections, we
discuss about some properties of MI.

B. Convexity and Continuity of Mutual Information

We begin this section by defining convex and concave
function. A function f(x) is a convex function for interval
(u, v) if for every xi, xj ∈ (u, v) and 0 ≤ α ≤ 1 holds

Fig. 2. a. Convex functions represented by a an upward-opening. b. Concave
function represented by a downward-opening curve. [17]

f(αxi + (1− α)xj) ≤ αf(xi) + (1− α)f(xj) [17]. We then
call f as strictly convex if equality is satisfied when α = 0 or
α = 1. Meanwhile, a function f is said to be concave when
the negation −f is convex. Figure 2 shows the examples of
convex and concave function.

We then have three theorems about the convexity and
concavity of KL-divergence, entropy, and mutual information.

Theorem III.3. DKL(PX ||QX) is convex function. In partic-
ular given the pair of distribution functions (PX i, QX i) and
(PXj,QXj) then

DKL(αPXi + (1− α)PXj ||αQXi + (1− α)QXj) ≤
αDKL(PXi||QXi + (1− α)DKL(PXj ||QXj)) (12)

for 0 ≤ α ≤ 1 [17]

Theorem III.4. Given a probability distribution PX of RV X
on space X , entropy H(PX) is concave [17].

Theorem III.5. Let (X,Y ) ∼ PX,Y (x, y) =
PX(x)PY |X(y|x). The mutual information I(X;Y ) is a
concave function of PX(x) for fixed PY |X(y|x) and a convex
function of PY |X(y|x) for fixed PX [17].

Besides being convex, MI also possesses continuity prop-
erty. We show this property by first seeing that KL divergence
and entropy are continuous. Formally, for a fix distribution QX
on space X with Q(x) > 0 ∀x ∈ X then DKL(PX ||QX) is
continuous. In particular, H(PX) is continuous [18]. We then
define MI by I(X;Y ) = H(X) + H(Y ) − H(X,Y ). Since
H(X) is continuous, then I(X;Y ) is assured to be continuous.

C. Jensen Inequality and The Consequences for Mutual Infor-
mation

The Jensen inequality requires a function to be convex.



Theorem III.6. Jensen’s inequality: if g is a convex function
and X is a random variable then

E(g(X)) ≥ g(EX) (13)

with equality hold when the function is strictly convex

This inequality is used to discover the property of KL-
divergence. Note that we have shown that KL-divergence is
a convex function (Equation 12).

Theorem III.7. Divergence inequality: Given distribution
function PX and QX over x ∈ X . Then it applies that

D(PX ||QX) ≥ 0 (14)

with equality hold when PX(x) = QX(x)

We then use the theorem above to imply the property of MI.
Since I(X;Y ) = D(PX,Y (x, y)||PX(x)PY (y)) then it im-
plies that I(X;Y ) ≥ 0 with equality hold when PX,Y (x, y) =
PX(x)PY (y). Second implication is I(X;Y |Z) ≥ 0 since we
can transform it into the form of DKL as well. The last im-
plication already being stated in preliminary section which is
H(X|Y ) ≤ H(X). Recall that I(X;Y ) = H(X)−H(X|Y ).
Since I(X;Y ) ≥ 0 then H(X)−H(X|Y ) ≥ 0.

D. Relations between Conditional Independence and Mutual
Information

In this section, we show that some conditional independent
forms of distribution results in inequality of MI. Random
variable X,Y, Z are said to be conditional independent if:

PX,Z|Y (x, z|y) =
PX,Y,Z(x, y, z)

PY (y)

=
PX,Y (x, y)PZ|Y (z|y)

PY (y)

= PX|Y (x|y)PZ|Y (z|y) (15)

From the graphical model perspective, random variable X,Z
are conditionally independent given Y if and only if X,Y, Z
forms a Markov chain denoted by X → Y → Z [18]. Under
the circumstance, joint probability X,Y, Z is defined by:

PX,Y,Z = PX(x)PY |X(y|x)PZ|Y (z|y) (16)

Furthermore, Markov chain X → Y → Z also implies Z →
Y → X [18]. Another form of Markov chain that satisfies
conditional independence is X ← Y → Z [18] where the
joint probability is defined by:

PX,Y,Z = PY (y)PX|Y (x|y)PZ|Y (z|y) (17)

Having the definitions, we derive inequality theorem con-
strained by the Markov chain form.

Theorem III.8. if X → Y → Z then I(X;Y ) ≥ I(X;Z)

Using the above theorem, we can derive two properties. First,
if Z = g(Y ) then we have I(X;Y ) ≥ I(X; g(Y )) since
X → Y → g(Y ) will follows Markov chain. We also have
(X;Y |Z) ≤ I(X;Y ). This property comes by noticing that
I(X;Y |Z) = 0 and I(X;Z) ≥ 0 [18].

E. Geometric Interpretation of Mutual Information

We know elaborate mutual information from the perspective
of geometry. First, we examine mutual information as condi-
tional divergence. Recall Equation 2, we write it into discrete
form as:

I(X;Y ) = DKL(PY |X ||PY |PX)

=
∑
x

DKL(PY |X=x||PY )PX(x)

We can see that each outcome x is weighted by probability
distribution PX(x). Hence, we can say that MI is a weighted
distance measure between two distributions.

In this section, we specify an auxiliary distribution Q to
redefine MI.

Theorem III.9. ∀QY such that DKL(PY ||QY ) <∞

I(X;Y ) = DKL(PX|Y ||QX |PY )−D(PX ||QX) (18)

If QX is optimum such that QX = PX then
the second term can be removed, thus I(X;Y ) =
argmin
QX

DKL(PX|Y ||QX |PY ) [18]. Intuitively, the auxiliary

distribution QX will be moving towards the real distribution
PX in some probability measure space during the optimiza-
tion.

We can scale up the utilization of auxiliary/variational
distribution for two RV X,Y . In the theorem below, we specify
a new auxiliary distribution QY .

Theorem III.10. We can see mutual information as a distance
to product distribution [18].

I(X;Y ) = argmin
QX ,QY

DKL(PX,Y ||QXQY ) (19)

We can generalize the theorem above to con-
ditional mutual information as I(X;Z|Y ) =

argmin
QX,Y,Z :X→Y→Z

DKL(PX,Y,Z ||QX,Y,Z) [18].

F. Variational Form of Mutual Information

In the previous section, we have discussed one of the
variational form of MI (Equation 18). This section provides
another two variational forms of MI. These forms are based
on characterizations KL-divergence : Donsker-Varadhan and
Gelfand-Yaglom-Perez.

We begin by introducing the Donsker-Varadhan form of KL-
divergence.

Theorem III.11. Donsker-Varadhan: Let PX , QX be a prob-
ability measures of RV X on space X and C be the set
of function g : X → R such that EQX

[eg(X)] < ∞.
If DKL(PX ||QX) < ∞ then for all f ∈ C expectation
EPX

[g(X)] exists and also [18]:

D(PX ||QX) = sup
g∈C

EPX [g(X)]− logEQX
[eg(X)] (20)

We then apply the theorem above to find the Donsker-
Varadhan form of MI. Using the Equation 4 and Equation
20 we get:



I(X;Y ) = sup
g

E[g(X,Y )]− logE[eg(X,Ŷ )] (21)

with Ŷ is a duplicate of Y which is independent of X and the
supremum is over bounded or even bounded by continuous
functions g.

The next theorem introducing Gelfand-Yaglom-Perez form
of KL-divergence which involves σ-space.

Theorem III.12. Gelfand-Yaglom-Perez: Let PX , QX be a
probability measures on space X with σ-algebra F . Then:

D(PX ||QX) = sup
{E1,...,En}

n∑
i=1

PX [Ei] log
PX [Ei]

QX [Ei]
(22)

with the supremum is over all finite F-measurable partitions:
∪nj=1Ej = X , Ej ∩ Ei = ∅.

with 0 log 1
0 = 0 and log 1

0 = ∞ for conventions. We then
apply the theorem above to find the Donsker-Varadhan form
of MI. Using the Equation 4 and Equation 22 we get:

I(X;Y ) = sup
{Ei}×{Fj}

∑
i,j

PX,Y [Ei × Fj ] log
PX,Y [Ei × Fj ]
PX [Ei]PY [Fj ]

(23)

with supremum is over finite partitions space X and Y .

IV. MUTUAL INFORMATION: ESTIMATION METHODS

We already know that mutual information can capture the
dependence of random variables. But often times we can not
directly use the closed function of mutual information. Recall
that in the Equation 1, we need the access to PX,Y (x, y),
PX , and PY (y) which are not always guaranteed. The mutual
information estimation then come to bound the true MI. The
estimation is either upper-bounding or lower-bounding the true
MI. The idea of MI estimations come from variational form of
MI. In the previous section we already discuss three variational
forms of MI. We try to approximate the MI estimation by using
an auxilary distribution or a critic function.

In this section, we review several MI estimation methods.
The review has been conducted before by Poole et al., (2019).
Figure 3 shows the schematic of variational bounds of mutual
information proposed by Poole et al., 2019 [20]. In this article,
we divide the reviews into three sections: normalized bounds,
unnormalized bounds, and improved bounds.

A. Normalized Bounds

In this section, we discuss two versions of normalized
bounds, upper bound and lower bound MI estimation. The
bounds were firstly introduced by Agakov [13]. Recall the
definition of MI in Equation 1. We then rewrite PX,Y (x, y) =
PY |X(y|x)PY (y). Subsequently, we apply Theorem III.10
by replacing PY (y) with a variational distribution QY (y).
Mathematically, we can write:

Fig. 3. Schematic of variational bounds of mutual information proposed by
Poole et al., 2019. The schematic is based on the presence of the available
distributions [20]

I(X,Y ) = EPX,Y (x,y)

[
log

PY |X(y|x)
PY (y)

]
= EPX,Y (x,y)

[
log

PY |X(y|x)QY (y)
PY (y)QY (y)

]
= EPX,Y (x,y)

[
log

PY |X(y|x)
QY (y)

]
−KL(PY (y)||QY (y))

≥ EPX,Y (x,y)

[
log

PY |X(y|x)
QY (y)

]
, IR (24)

Thus, we upper-bounding the MI. Note that in Theorem III.10,
we can assure equality since we assumed that we can find
the optimum QY . We also need to constraint QY (y) to be
intractable. However, the assumption is not assured in the
real world. One of the applications of the bound is for deep
information bottle-neck model [12].

In contrast, we derive lower-bound by applying Theo-
rem III.10 into the numerator PX|Y (x|y) [13]. We replace
PX|Y (x|y) with QX|Y (x|y):

I(X,Y ) = EPX,Y (x,y)

[
log

PX|Y (x|y)
PX(x)

]
= EPX,Y (x,y)

[
log

QX|Y (x|y)
PX(x)

]
+

EPY (y)

[
KL(PX|Y (x|y)||QX|Y (x|y))

]
≥ EPX,Y (x,y)

[
logQX|Y (x|y)

]
+ h(X) , IBA

(25)

with h(X) is the marginal entropy of X . The objective is
tractable if h(X) is known. However, h(X) is often to be
unknown. This bound has been applied as regularizer of Info-
GAN objective function [8].

B. Unnormalized Bounds

We can solve the intractibility problem from the previous
section by using the unnormalized form of QX|Y (x|y). We



write the distribution in terms of a critic function g(x, y) and
marginal distribution PX(x):

QX|Y (x|y) =
PX(x)

Z(y)
eg(x,y); Z(y) = EPX(x)

[
eg(x,y)

]
(26)

By applying the equation above into Equation 25, we get
unnormalized BA estimation (IUBA):

EPX,Y (x,y)[g(x, y)]− EPY (y) [logZ(y)] , IUBA (27)

Note that in the equation above, the entropy H(X) is no longer
involved. However, the term logZ(y) is still intractable. Since
log function is convex, by applying the Jensen inequality we
have Donsker-Varadhan lower bound [21]:

EPX,Y (x,y)[g(x, y)]− logEPY (y) [Z(y)] , IDKV (28)

Note that IBA ≥ IDKV (by Jensen inequality). We have seen
this form from Theorem III.11, except without confirming
the equality. This bound is also still intractable. By upper-
bounding the log partition logZ(y), we can form a tractable
bound. We specify an inequality log(x) ≤ x

a + log(a) −
1,∀x, a > 0. Applying the inequality into the second term
of Equation 27 will give log(Z(y)) ≤ Z(y)

a(y) + log(a(y)) − 1.
Finally, we can rewrite the bound as:

EPX,Y (x,y)[g(x, y)]−

EPY (y)

[
EPX(x)

[
eg(x,y)

]
a(y)

+ log(a(y))− 1

]
, ITUBA

(29)

The bound is optimized with respect to a(y) and g. Both
are optimized simultaneously. Furthermore, we can simplify
Equation 29 by set a(y) = e which leads to Nguyen-
WainWright-Jordan estimation [22]:

EPX,Y (x,y)[g(x, y)]− e−1EPY (y) [Z(y)] , INWJ (30)

Generally, unnormalized bounds suffer from the high variance
problem due to the log partition function.

C. Improved Bounds

In this section, we discuss several improvements that have
been made to respond the current drawbacks of normalized
and unnormalized bound.

Info-NCE extends the NWJ estimations by using Monte
Carlo estimation on multiple samples [16]:

I(X,Y ) ≥ E

[
1

k

K∑
i=1

log
ef(xi,yi)∑K
j=1 e

f(xj ,yj)

]
, INCE (31)

However, this estimation tends to have a higher bias compared
to NWJ estimation.

Barber-Agakov upper bound estimation also have a problem
with the variational distribution QY (y). Evidently, learning
distribution Qy(y) without any prior knowledge is extremely
difficult especially when RV Y is high dimensional [1], [23].
The distribution QY (yi) can be replaced with Monte Carlo

approximation Qy(y) = 1
K−1

∑
j 6=i
PY |X(y|xj) [20], we derive

one left out (L1-out) upper bound estimation:

E

[
1

K

K∑
i=1

[
log

PY |X(yi|xi)
1

K−1
∑
j 6=i PY |X(yi|xj)

]]
, IL1−out (32)

The estimation method is called one left out because we
discard one sample on the denumerator inside the sum. The
drawback of this method lies to its numerical instability
especially when RV Y is high dimensional [1].

Given all existing MI estimations, the current methods still
have several drawbacks. MI estimation is currently active
research. For example, current research shows that we can
estimate MI by using optimal transport concept that is Wasser-
stein distance [24]. Another research using clipping method to
reduce the variance of NWJ estimation [25].

V. CONCLUSION

The article discussed the definitions of mutual information
in the form of KL-divergence and entropy as well. The article
then delivered some properties of mutual information includ-
ing concavity, the continuity, Jensen inequality, conditional
independence, and variational form. Later, the article reviewed
several mutual information estimation methods. The estimation
methods are useful whenever we have an unaccessible proba-
bility (commonly marginal distribution). We also mention that
the current mutual information estimation methods also have
drawbacks.
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APPENDIX

A. Proof of Theorem II.1

We prove the theorem in the discrete form of random
variables [17]

H(X,Y ) = −
∑
x∈X

∑
y∈Y

PX,Y (x, y) logPX,Y (x, y)

= −
∑
x∈X

∑
y∈Y

PX,Y (x, y) logPX(x)PY |X(y|x)

= −
∑
x∈X

∑
y∈Y

PX,Y (x, y) logPX(x)

−
∑
x∈X

∑
y∈Y

PX,Y (x, y) logPY |X(y|x)

= −
∑
x∈X

PX logPX(x)

−
∑
x∈X

∑
y∈Y

PX,Y (x, y) logPY |X(y|x)

= H(X) +H(Y |X)

B. Proof of Theorem II.1

I(X1, ..., Xn;Y ) = H(X1, ..., Xn)−H(X1, ..., Xn|Y )

=

n∑
i=1

H(Xi|Xi−1), ..., X1)

−
n∑
i=1

H(Xi|Xi−1, ..., X1, Y )

=

n∑
i=1

I(Xi;Y |X1, ..., Xi−1)

C. Proof of Theorem III.3

In order to prove the theorem, we apply log sum inequality
on the left-hand side [17].

(αP1(x) + (1− α)P2(x) log
αP1(x) + (1− α)P2(x)

αQ1(x) + (1− α)Q2(x)
)

≤ αP1(x) log
αP1(x)

αQ1(x)
+ (1− α)P2(x) log

(1− α)P2(x)

(1− α)Q2(x)

D. Proof of Theorem III.4

The result comes from the fact that H(PX) = log|X | −
DKL(PX ||UX) where UX is an uniform distribution of x ∈
X . The negative term of KL-divergence of the equation then
implies its concavity [17].

E. Proof of Theorem III.5

We recall the definition of MI to prove the theorem:

I(X;Y ) = H(Y )−H(Y |X)

= H(Y )−
∑
x

PX(x)H(Y |X = x)

First, we proof the first argument of the theorem. Given
PY |X(y|x), then PY (y) is linear function of PX(x). Since
H(Y ) is a convex function of PY (y), then we can say that
H(Y ) is a concave function of PX(x). We can see the second
term of as a function of PX(x). Thus, the difference is a
concave function of PX(x) [17].

For the second argument, we specify two conditional dis-
tributions P1 Y |X , P2 Y |X . The corresponding joint distribu-
tions given the conditional distributions are P1X,Y (x, y) =
PX(x)P1 Y |X(y|x) and P2X,Y (x, y) = PX(x)P2 Y |X(y|x)
with respective marginals PX(x), P1 Y (y) and PX(x),
P1 Y (y) We then specify a conditional distribution which is
a mixture of P1 Y |X(y|x) and P2 Y |X(y|x):

PαY |X(y|x) = αP1 Y |X(y|x) + (1− α)P2 Y |X(y|x)

0 ≤ α ≤ 1. We can easily see that the corresponding joint
distribution is also a mixture joint distribution,

PαX,Y (x, y) = αP1X,Y (x, y) + (1− α)P2X,Y (x, y)

and the marginal distribution Y is also a mixture,

PαY (y) = αP1 Y (y) + (1− α)P2 Y (y)



If we let Qα X,Y (x, y) = PX(x)Pα Y (y) be the product of the
marginal distributions, then we have:

QαX,Y (x, y) = αQ1X,Y (x, y) + (1− α)Q2X,Y (x, y)

We already know that MI can be thought as KL-divergence
between joint distribution and the product of marginal distri-
butions, hence:

I(X;Y ) = DKL(Pα X,Y (x, y)||Qα|:X,Y (x, y))

Since KL-divergence is a convex function, thus the MI is
convex function of conditional distribution [17].

F. Proof of Theorem III.6

The proof is for discrete distribution by using induction on
the number of mass point. At first, we settle the base case
which is the inequality of two-mass distribution (x1 and x2)
[17]. Let w1 and w2 be the weights for x1 and x2 respectively,
the inequality becomes:

w1 g(x1) + w2 g(x2) ≥ g(w1 x1 + w2 x2)

Note that this inequality is similar with the definition of convex
function. Suppose that the inequality is true for k − 1 points.
If we write ŵi = wi/(1− wk) then :

k∑
i=1

wi g(xi) = wk g(xk) + (1− wk)
k−1∑
i=1

ŵi g(xi)

≥ wkg(xk) + (1− wk)g

(
k−1∑
i=1

ŵixi

)

≥ g

(
wk xk + (1− wk)

k−1∑
i=1

ŵixi

)

= g

(
k∑
i=1

wi xi

)

G. Proof of Theorem III.3

Let A be the support of Px(x)

−DKL(PX ||QX) = −
∑
x∈A

PX(x) log
PX(x)

QXx

=
∑
x∈A

PX(x) log
QX(x)

PX(x)

≤ log
∑
xinA

PX(x) log
QX(x)

PX(x)

= log
∑
x∈A

QX(x)

≤ log
∑
x∈X

QX(x)

= log 1

= 0

H. Proof of Theorem III.8

I(X;Y,Z) = I(X;Z) + I(X;Y |Z)
= I(X;Y ) + I(X;Z|Y )

Since X and Z are conditionally independent given Y , thus
I(X;Z|Y ). Moreover, I(X;Y |Z) ≥ 0 implies:

I(X;Y ) ≥ I(X;Z)

I. Proof of Theorem III.9

I(X;Y ) = EPX,Y

[
log

PY |X(y|x)
PY (y)

]
= EPX,Y

[
log

PY |X(y|x)QY (y)
PY (y)QY (y)

]
= EPX,Y

[
log

PY |X(y|x)
QY (y)

]
+

EPX,Y

[
log

QY (y)

PY (y)

]
= EPX

EPY

[
log

PY |X(y|x)
QY (y)

]
−

EPX,Y

[
log

PY (y)

QY (y)

]
= EPX

[
DKL(PY |X ||QY )

]
−DKL(PY ||QY )

= DKL(PY |X ||QY |PX)−DKL(PY ||QY )

J. Proof of Theorem III.10

Since QX and QY minimum, we have QX = PX and QY =
PY .

I(X;Y ) = EPX,Y

[
log

PX,Y (x, y)QX(x)QY (y)

PX(x)PY (y)QX(x)QY (y)

]
= EPX,Y

[
log

PX,Y (x, y)

PX(x)PY (y)

]
+ EPX,Y

[
log

QX(x)

PX(x)

]
+

EPX,Y

[
log

QY (y)

PY (y)

]
= DKL(PX,Y ||QXQY ) + 0 + 0

= DKL(PX,Y ||QXQY )
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