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Abstract

Preferential Bayesian optimization (PBO) is a sample-efficient framework for optimizing
a black-box function by utilizing human preferences between two candidate solutions as a
proxy. Conventional PBO relies on homoscedastic noise to model human preference struc-
ture. However, such noise fails to accurately capture the varying levels of human aleatoric
uncertainty among different pairs of candidates. For instance, a chemist with solid expertise
in glucose-related molecules may easily compare two compounds and struggle for alcohol-
related molecules. Furthermore, PBO ignores this uncertainty when searching for a new
candidate, consequently underestimating the risk associated with human uncertainty. To
address this, we propose heteroscedastic noise models to learn human preference structure.
Moreover, we integrate the preference structure with the acquisition functions that account
for aleatoric uncertainty. The noise models assign noise based on the distance of a specific
input to a predefined set of reliable inputs known as anchors. We empirically evaluate the
proposed approach on a range of synthetic black-box functions, demonstrating a consistent
improvement over homoscedastic PBO.

Keywords: Preferential Bayesian Optimization, Heteroscedastic noise

1. Introduction

Preferential Bayesian Optimization (PBO) utilizes the Gaussian process (GP) to learn hu-
man preference structure (Brochu et al., 2010). Typically, existing works model human
preferences together with a notion of epistemic uncertainty, coming from the fact that we
only have a finite number of observations to learn the latent function describing the human’s
utility (Chu and Ghahramani, 2005). Here, we stress that a key component to model a user’s
incomplete knowledge is the input-dependent aleatoric uncertainty, as the relevance of an
expert is not uniform across the design space. Consider a scenario where a chemist profi-
cient in glucose-related compounds can effortlessly contrast two substances but encounter
challenges when dealing with alcohol-related molecules. In such a case, assigning a uniform
level of uncertainty to both types of molecules is not reasonable.

Another challenge is that PBO approaches are typically risk-neutral, only seeking to op-
timize the expected preference structure value (Gonzalez et al., 2017). However, the varying
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human uncertainty results in situations where the preference structure yields two solutions
that deliver similar expected function values, yet one may be noisier. Consequently, the op-
timization problem shifts towards a risk-averse paradigm, necessitating a balance between
maximizing the expected preference structure value and minimizing uncertainty (Makarova
et al., 2021). For example, a chemist might opt for slightly inferior quality molecules but,
at the same time, lead to a smaller variance.

This research aims to develop heteroscedastic PBO models by leveraging the information
provided by humans. Our contributions are summarized as follows:

• Development of a heteroscedastic PBO framework employing a kernel density estimator-
based noise model to account for human aleatoric uncertainty.

• Extensive empirical validation showcasing the effectiveness and superiority of our pro-
posed models through experiments conducted on various synthetic black-box func-
tions, consistently outperforming homoscedastic PBO approaches.

2. Method

For a function f : X → R defined over a subset X ⊂ Rd, we aim at finding x∗ = argmax
x∈X

f(x).

We assume the presence of heteroscedastic noise, such that for all x ∈ X ,

g(x) = f(x) + ε(x), (1)

where ε represents the input-dependent noise, assumed to be independent of the latent func-
tion. In contrast to vanilla Bayesian Optimization (BO), in which the black-box function
can be queried for a specific input, resulting in a scalar output, we assume that f can only
be queried by means of preferences x ≻ x̂. The latter is a binary random variable taking
value 1 when x is preferred to x̂ and 0 otherwise. A preference x ≻ x̂ is then such that

x ≻ x̂ ⇐⇒ g(x) > g(x̂) ⇐⇒ f(x) + ε(x) > f(x̂) + ε(x̂),

We assume access to a dataset of m comparisons D = {xk ≻ x̂k}mk=1, thus involving 2m
inputs. Denoting v ≜ f(x̂) + ε(x̂) − f(x) − ε(x), we have D = {vk < 0}mk=1, which we
write vm for conciseness. Denote the winner (resp. loser) of duel xk ≻ x̂k as xk,w (resp.
xk,l), and consider X = (x1,∗, . . . ,xn,∗,x1,w, . . . ,xm,w,x1,l, . . . ,xm,l). We begin by placing a
zero-mean Gaussian process prior over the latent function f with kernel k. For a (n+2m)-
dimensional vector of latent function values f = {f(x)}x∈X, this yields

p(f) = |2πK|− 1
2 exp

(
−1

2
f⊤K−1f

)
, (2)
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where K = {k(x,x′)}x,x′∈X ∈ R(n+2m)×(n+2m) is the kernel matrix. The joint distribution
for (f∗,vm) can be written as follows (Takeno et al., 2023):

[
f∗
vm

]
∼ N (0,Σ)

Σ ≜ A(K+B)A⊤ ∈ R(n+m)×(n+m)

A ≜

[
In 0 0
0 −Im Im

]
∈ R(n+m)×(n+2m)

B ≜

[
0 0
0 Vnoise

]
∈ R(n+2m)×(n+2m) (3)

Modeling the noise of our process boils down to specifying Vnoise, the lower right component
of the matrix B. In the homoscedastic setting, Vnoise is a diagonal matrix with constant
entries Vnoise = σ2

noiseI2m. In the heteroscedastic setting, we may consider different values
for the diagonal entries of Vnoise, and even take into account correlations among inputs at
the noise level. In the next two subsections, we develop two models.

2.1 Anchors-based input-dependent noise

As a starting point for our noise process ε, we draw inspiration from the framework described

by Eduardo and Gutmann (2023) and introduce a set of initial designs x0 = {x(q)
0 }Qq=1

provided by the expert. This set is also referred to as the anchor set and contains samples
over which the user has high confidence over their possible value, meaning that the noise
should have low variance. Comparisons involving samples close to the anchors should,
therefore, be easy for the expert. This intuition leads to consider a mapping ϕ,

ϕ(x) =
1

Q

Q∑
q=1

1

hd
kh(∥x− x

(q)
0 ∥22), (4)

which associates a high value to a sample x the closer it lies from the anchors x0. This
notion of closeness is captured by a ℓ2 distance and a kernel k with a lengthscale h. In this
work, k is chosen to be a squared exponential kernel.

As ϕ assigns higher values to points in proximity to the anchors x0, which are believed
to characterize regions with lower noise, we define our noise model as follows:

ε(xk) ∼ N (0, exp(−σ2
p ϕ(xk))). (5)

with σ2
p > 0 is a scaling factor. The negative squared exponentiation effectively diminishes

the noise variance for higher values of ϕ in an exponentially decreasing manner. Hence, ϕ
can be envisioned as a hyperprior governing the noise. Finally, in reference to Equation 3,
this model implies that Vnoise = diag(V[ε(xk)]1≤k≤2m).

3



2.2 Gaussian Process-based noise modeling

The previous model described by Equation 5 does not model noise correlation between
inputs. To tackle this issue, we extend it using a GP formulation as follows

ỹ|f , ε, x̃ ∼ N (f(x̃), ε(x̃)) (6)

ε ∼ GP(0,L)
L(x, x̃) = σ2

0(x, x̃)Cs(x, x̃)

σ2
0(x, x̃) = σ2

p

√
ϕ(x)ϕ(x̃)

Cs is a stationary covariance function and σ2
p > 0 a scaling factor. Notably, when considering

two points xi and xj that are close to anchors—where both ϕ(xi) and ϕ(xj) are large—this
prior suggests a high correlation between ε(xi) and ε(xj). For this model, the derivation of
the joint distribution (f∗,vm) slightly differs but can again be written in closed form.

Regarding inference, we resort to the Most Likely Heteroscedastic Gaussian Process
(MLHGP) scheme introduced by Kersting et al. (2007) and adapt it to the Preferential
setting, yielding MLHPGP:

1. If first iteration → Fit preferential GP f given D = {xk ≻ x̂k}mk=1 with ε(xk), ε(x̂k) ∼
N (0, σ2

ε) using HB.
else → Fit f given D = {xk ≻ x̂k}mk=1 with ε(xk) ∼ N (0, exp(µ∗

g(xk)), ε(x̂k) ∼
N (0, exp(µ∗

g(x̂k)) using HB.
This step yields the posterior f∗ ∼ N (µ∗

f ,Σ
∗
f ).

2. Fit g given D = {xk ≻ x̂k}mk=1 and f∗ ∼ N (µ∗
f ,Σ

∗
f ) using HB. This step yields

g ∼ N (µ∗
g,Σ

∗
g)

3. Repeat until convergence

The GP f learned over D is used to subtract the effect of the latent function on the ob-
servations, creating pseudo-observations of the noise, which are then fitted by another GP g.
The details of MLHPGP can be found in the appendix.

2.3 Inference and Acquisition strategy

At acquisition time, the idea is to leverage the introduced noise models to factor out the
noise at candidate acquisition time. Several acquisition functions have been designed for
heteroscedastic BO, namely, Aleatoric Noise-Penalized Expected Improvement (ANPEI)
and Heteroscedastic Augmented Expected Improvement (HAEI) (Griffiths et al., 2021).

HAEI(x) = E[(f(x∗)− f(x))+]

(
1− γσε(x)√

V[f(x)] + γ2σ2
ε(x)

)
(7)

ANPEI(x) = βE[(f(x∗)− f(x))+]− (1− β)σε(x) (8)

where γ denotes a positive penalty term and β ∈ [0, 1] is a constant.
These acquisition functions can be integrated into the preferential BO setting in a

straightforward manner. One only requires small changes in the Hallucination Believer
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Algorithm 1 Hallucination Believer for HPBO

1: Input: Initial dataset D = {xk ≻ x̂k}mk=1

2: for t = 1, . . . do

3: x
(1)
t,w ← x

(1)
t−1,w

4: Draw ṽt−1 from the posterior p(vt−1|vt−1 < 0)
5: Sequentially estimate f and ε (Section 2.1 and Section 2.2)

6: x
(2)
t ← argmaxx∈X α(x) based on GPs f |ṽt−1 and ε

7: Set xt,w and xt,l as the winner and loser of the duel between x
(1)
t and x

(2)
t , respectively.

8: Dt ← Dt−1 ∪ (xt,w ≻ xt,l)
9: end for

strategy proposed by Takeno et al. (2023). The latter builds on the observation that the
posterior predictive distribution over latent function values f∗ at a set of newly observed
points x∗ given observed duels vm < 0 and vm can be computed in closed-form (Takeno
et al., 2023, Proposition 3.1)

p(f∗|vm < 0,vm) = N (µ∗|v,Σ∗|v) (9)

µ∗|v = Σ∗,vΣ
−1
v,vvm−1

Σ∗|v = Σ∗,∗ +Vnoise∗ −Σ∗,vΣ
−1
v,vΣ

⊤
∗,v.

The procedure and highlighted changes are presented in Algorithm 1. Instead of using
a classical acquisition function to obtain the second member of the duel, we use a het-
eroscedastic acquisition function like ANPEI or HAEI. The latter involves the GPs for the
latent function f and the noise ε, estimated with the MLHPGP method (Section 2.2).

Furthermore, in a preferential setting, the incumbent η required by the acquisition func-

tions (Equations 7 and 8) is not available. Thus at iteration t, we use η ∼ p(f(x
(1)
t,w)|x

(1)
t,w),

where x
(1)
t,w is the winner of the previous duel performed at iteration t− 1.

Considering the noise in the preferential acquisition function, the tradeoff is to select in-
formative and easy duels for humans, as they are believed to involve samples with low noise.
Intuitively, the comparison between two points may be informative but merely impossible
to carry for a human due to incomplete knowledge of a human.

3. Experiments

We evaluate our method on several 2-dimensional synthetic functions: Branin, Beale, and
Styblinski-Tang. A linear Gaussian noise is added to the function observations following the
work of (Griffiths et al., 2021). We perform N = 3 repetitions per baseline with different
random seeds. As kernel, we use the squared exponential kernel to exhibit stationary kernel.
We select Q = 5 anchors as initial points. Results are presented in Figure 1. To a lesser
extent, the Branin and the Beale function, the ANPEI and HAEI acquisition functions
equipped with our simple model perform on par with the homoscedastic approach EI. Next,
the GP-based noise models yield poor results compared to the other baselines. This suggests
computational issues, for instance, at inference time with Laplace approximation, as this
approach is known to be suboptimal for preferential GPs (Takeno et al., 2023).
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Figure 1: Best value found over BO trial for three synthetic test functions. Mean and stan-
dard deviation computed across N = 3 repetitions. Plain curves are associated
with the simple model (Section 2.1), dashed curves with the GP model (Sec-
tion 2.2, while the dotted baseline does not consider heteroscedastic noise.

4. Conclusion

We presented HPBO, a method to integrate heteroscedastic noise in Preferential BO with
heteroscedastic noise. Borrowing ideas from (Eduardo and Gutmann, 2023), we based our
noise models on anchors, a set of inputs for which the user has high confidence. In several
synthetic experiments, preliminary results are not conclusive and highlight the need for
further investigations from the modeling, experimental, and theoretical point of view. For
instance, the inference was carried out using Laplace approximation, which is known to be
suboptimal for preferential GPs (Takeno et al., 2023). Next, different synthetically injected
noise models could be considered, together with real-world examples.

This being said, we want to draw attention to the fact that the combination between
preferential BO and heteroscedastic noise is sensible, specifically when considering human
subjects as labelers and when the dimensionality of the input space increases. For humans,
performing comparisons bears an inherent noise: typically, inputs that are similar are ex-
pected to be harder to compare than inputs that are far apart. However, the notion of
similarity, or distance, is not straightforward here. For instance, two D-dimensional inputs
may be close in ℓ2-norm, but share equal values on several input dimensions, thus making
them potentially easier to compare than two inputs that are far in ℓ2-norm but with all
dimensions taking different values. This argument does not extend to structured data like
images, graphs or molecules, which suggests the use of kernels, for that matter. We have
relied on a set of anchors to encompass this notion, together with the mapping ϕ, involv-
ing a kernel k, which could accommodate structured inputs. Encompassing these different
aspects in our framework represents promising avenues for future work.

6



Appendix - Model Selection for anchors-based input-dependent noise

For model selection, we minimize the negative log marginal likelihood approximated with
Laplace approximation. The approximation requires obtaining fMAP = argminf − log p(f |vm) ≈
argminf S(f) where we define S(f) as

S(f) = − log Φ(z) +
1

2
f⊤K−1f

with − log Φ(z) = −∑m
k=1 log Φ(zk). We derive the likelihood Φ(zk) as follows:

p(xk ≻ x̂k|f(xk), f(x̂k), ε(xk), ε(x̂k)) = Φ

zk ≜
f(xk)− f(x̂k)√

exp(−σ2
pϕ(xk)) + exp(−σ2

pϕ(x̂k))



where ε(xk) ∼ N (0, exp(−σ2
pϕ(xk))) and ε(x̂k) ∼ N (0, exp(−σ2

pϕ(x̂k))). Taking the first
and the second derivates, respectively gives us

∂S(f)

∂f
=

− ϕ(z)√
exp(−σ2

pϕ(x))+exp(−σ2
pϕ(x̂))Φ(z)

ϕ(z)√
exp(−σ2

pϕ(x))+exp(−σ2
pϕ(x̂))Φ(z)

+K−1f

∂2S(f)

∂2f
= Λ+K−1

Λ =

[
z′diag( ϕ(z)

2

Φ(z)2
+ ϕ(z)

Φ(z)z) z′diag(− ϕ(z)2

Φ(z)2
− ϕ(z)

Φ(z)z)

z′diag(− ϕ(z)2

Φ(z)2
− ϕ(z)

Φ(z)z) z′diag( ϕ(z)
2

Φ(z)2
+ ϕ(z)

Φ(z)z)

]

z′ =
1

exp(−σ2
pϕ(x)) + exp(−σ2

pϕ(x̂))

Given ∂S(f)
∂f and ∂2S(f)

∂2f
, we construct the evidence as

p(D|θ) ≈ exp(−S(fMAP))|I +KΛMAP|−1/2

with ΛMAP = Λ|fMAP
. We then write the model selection problem as

θ∗ = argmin
θ
− log p(D|θ)

with θ = {λ, λKDE} denotes the GP hyperparameters. We utilize L-BFGS-B to obtain the
solution.

Appendix - Preferential MLHGP

We rely on the Laplace approximation to fit g and perform model selection on f ,g. The
following subsections provide the details of model selection f and g.
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Model selection of f

While the posterior inference depends on the hallucination believer method, we perform
model selection by minimizing the negative log marginal likelihood approximated by Laplace
approximation. The approximation requires obtaining fMAP = argminf − log p(f |D) ≈
argmaxf S(f) where we define S(f) as

S(f) = − log Φ(z) +
1

2
f⊤K−1f

with − log Φ(z) = −∑m
k=1 log Φ(zk). We derive the likelihood Φ(zk) as follows:

p(xk ≻ x̂k|f(xk), f(x̂k), ε(xk), ε(x̂k)) = Φ

zk ≜
f(xk)− f(x̂k)√

exp(µ∗
g(xk)) + exp(µ∗

g(x̂k))


with ε(xk) ∼ N (0, exp(µ∗

g(xk)) and ε(x̂k) ∼ N (0, exp(µ∗
g(xk)). Taking the first and the

second derivates, respectively, gives us

∂S(f)

∂f
=

− ϕ(z)√
exp(µ∗

g(x))+exp(µ∗
g(x̂))Φ(z)

ϕ(z)√
exp(µ∗

g(x))+exp(µ∗
g(x̂))Φ(z)

+K−1f

∂2S(f)

∂2f
= Λ+K−1

Λ =
1

exp(µ∗
g(x)) + exp(µ∗

g(x̂))

[
diag( ϕ(z)

2

Φ(z)2
+ ϕ(z)

Φ(z)z) diag(− ϕ(z)2

Φ(z)2
− ϕ(z)

Φ(z)z)

diag(− ϕ(z)2

Φ(z)2
− ϕ(z)

Φ(z)z) diag( ϕ(z)
2

Φ(z)2
+ ϕ(z)

Φ(z)z)

]

The model selection problem is the same as in the simple noise model.

Model Selection g

The model selection minimizes the negative log marginal likelihood approximated with
Laplace approximation. The approximation requires obtaining gMAP = argming− log p(g|D) ≈
argming S(g) where we define S(g) as

S(g) = − log Φ(z) +
1

2
g⊤Σ−1g

with − log Φ(z) = −∑m
k=1 log Φ(zk). We derive the likelihood Φ(zk) as follows:

p(xk ≻ x̂k|f(xk), f(x̂k), ε(xk), ε(x̂k)) = p(f(xk) + ε(xk) > f(x̂k) + ε(x̂k))

= p(f(x̂k)− f(xk) < ε(xk)− ε(x̂k))

= Φ

zk ≜
δxk

√
exp(g(xk))− δx̂k

√
exp(g(x̂k)) + µ∗

fxk
− µ∗

f x̂k√
Σ∗
fxk,xk

+Σ∗
f x̂k,x̂k

− 2Σ∗
fxk,x̂k
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with δxk
∼ N (0, 1) and δx̂k

∼ N (0, 1). In GP-based noise model, we have ε(xk) ∼
N (0, exp(g(xk))) and ε(x̂k) ∼ N (0, exp(g(xk))). Since we aim to obtain gMAP, we per-
form the parameterization trick on ε(xk) and ε(x̂k) (third row). Taking the first and the
second derivatives of S(g) respectively gives us

∂S(g)

∂g
=

−0.5ϕ(z)(δx
√

exp(g(x))−δx̂
√

exp(g(x̂)))

Φ(z)
√

Σ∗
fx,x+Σ∗

f x̂,x̂−2Σ∗
fx,x̂

0.5ϕ(z)(δx
√

exp(g(x))−δx̂
√

exp(g(x̂)))

Φ(z)
√

Σ∗
fx,x+Σ∗

f x̂,x̂−2Σ∗
fx,x̂

+ L−1g

∂2S(g)

∂2g
= Λ+ L−1

Λ =

[
H −H
−H H

]
Let ẑ ≜ 0.5 δx

√
exp(g(x))− 0.5 δx̂

√
exp(g(x̂)), we define H as

H =
−1√

Σ∗
fx,x +Σ∗

f x̂,x̂ − 2Σ∗
fx,x̂

[ϕ(z)ẑ]′Φ(z)− ϕ(z)ẑ[Φ(z)]′

Φ2(z)

with

[ϕ(z)ẑ]′ = − ẑ2ϕ(z)z√
Σ∗
fx,x +Σ∗

f x̂,x̂ − 2Σ∗
fx,x̂

+
1

2
ϕ(z)ẑ

=

− ẑ2z√
Σ∗
fx,x +Σ∗

f x̂,x̂ − 2Σ∗
fx,x̂

+
1

2
ẑ

ϕ(z)

Φ′(z) =
ϕ(z)ẑ√

Σ∗
fx,x +Σ∗

f x̂,x̂ − 2Σ∗
fx,x̂

The model selection problem is the same as in the simple model. Finally, we define the
predictive distribution as

µ∗
g = L∗xLxxgMAP

Σ∗
g = L∗∗ − L∗x(Lxx + Λ−1

MAP)
−1L∗x
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