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Abstract
The main problem of Bayesian inference is com-
puting the posterior which is often intractable. In
this paper, we review variational inference (VI)
methods that aim to find a variational distribu-
tion to approximate the true posterior. The review
starts with the original form of variational infer-
ence. Then we also discuss the extension of VI:
mean-field, stochastic and black-box variational,
and amortized inference. Finally, we review the
recent improvement of variational inference.

1. Background
Uncertainty plays an important role in almost every aspect of
our life. Oftentimes, we involve uncertainty in our decision-
making. Therefore, we want to make the right estimation of
our confidence in decision-making. Examples of decision-
making include predicting the weather, predicting the next
season’s sale, and medical treatment for the patient.

Artificial intelligence and machine learning have a huge
potential to help us estimate the uncertainty by involving the
Bayes probability theorem. It turns out that Bayes probabil-
ity theorem provides the right tool to estimate the probability.
Specifically, machine learning utilizes the Bayes probability
to perform inference. The objective of inference is that given
the observed data, we want to infer the unobserved/latent
variables (Li, 2020). Involving the Bayes probability, the
goal of inference is to estimate the uncertainty of the latent
variable. This uncertainty is represented by the posterior
distribution of the latent variable given the observed data
(Bishop, 2007).

However, computing the posterior distribution is often in-
tractable. The source of intractability lies in the computa-
tion of the evidence, which involves integration (Li, 2020).
Therefore, we need the approximate inference to estimate
the true posterior distribution. The approximate inference
involves a variational distribution that replaces the role of
the true posterior distribution. This paper aims to review
several techniques that have been proposed to perform the
approximate inference.

This paper is arranged as follows. We first derive the general
form of variational inference in Chapter (2). Chapter (3)

tells us how to perform mean-field variational inference. We
then introduce the stochastic variational inference (SVI) in
Chapter (4) to solve the computation cost issue. Chapter
(5) provides a more general form of SVI called black-box
variational inference (BBVI). In Chapter (6) we derive the
amortized inference and highlighting its drawback. The
last two chapters discuss some modification proposed to
improve the approximation result. Chapter (7) disccuss
the design of the approximate inference while Chapter (8)
discuss the design of the objective function.

2. Variational inference
The core of Bayesian statistics is computing the posterior
distribution of parameters given the observed data (Bishop,
2007). Computing posterior distribution requires prior distri-
bution p(θ), likelihood p(D|θ) and the evidence p(D). The
prior distribution encodes our belief about the parameter θ
before involving the evidence. On the other hand, the like-
lihood describes the probability of the observed data given
the parameter. Lastly, the evidence provide the probability
of the observed data used to update the posterior.

p(θ |D) =
p(D | θ) p(θ)

p(D)
(1)

We can write the evidence as p(D) =
∫
p(D | θ) p(θ) dθ.

However, computing the marginal distribution p(D) is in-
tractable, in the sense that the integration is high dimen-
sional (Zhang et al., 2019). Instead, a variational distribution
qφ(θ) with parameters φ is introduced to approximate the
posterior. Mathematically, we can write qφ(θ) ≈ p(θ |D).
The goal of variational inference is to find the parameters
φ such that q gives the best matching (Bishop, 2007). We
assume that the set of possible qs are lying in space Q (Blei
et al., 2016). Commonly, this space describes a certain
family of distribution. For example, suppose that Q is the
space that consists all possible q parameterized by φ such
that 0 ≤ φ ≤ 1, φ ∈ R. Then, Q represents the family of
the Bernoulli distribution. Furthermore, it is possible that
the posterior p(θ |D) is not lying in the space Q. Figure 1
shows the illustration of variational inference.

We start by introducing KL-divergence between two dis-
tributions. Given probability distribution p(θ) and q(θ),
KL-divergence KL[p(θ) ‖ q(θ)] quantifies the additional
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Figure 1. The Illustration of variational inference (Blei et al., 2016).
The approximation starts with the initial q. Through the optimiza-
tion process, we obtain q∗ which gives the best matching.

amount of information to represent θ using q instead of
p (Bishop, 2007). Mathematically, we can write KL-
divergence as the expectation of log density ratio q(θ)

p(θ) .

KL[p(θ) ‖ q(θ)] = −
∫
q(θ) log

p(θ)

q(θ)
dθ (2)

= Eq(θ)
[
log

q(θ)

p(θ)

]
(3)

When p = q then KL[p ‖ q] = 0, otherwise KL[p ‖ q] ≥ 0.
It is also important to emphasize that KL-divergence is
not symmetric, means that KL[p ‖ q] 6= KL[q ‖ p]. The
derivation of variational objective will be based on KL-
divergence.

We start with the KL-divergence between q(θ) and p(θ),
written as KL[q(θ) | p(θ)]. For simplicity, we omit the pa-
rameters φ from the notation. Then, by using the definition
of conditional probability and the sum property of logarithm,
we obtain:

KL[q(θ) ‖ p(θ |D)] = −Eq(θ)
[
log

p(θ |D)

q(θ)

]
= −Eq(θ)

[
log

p(θ, D)

q(θ) p(D)

]
= −Eq(θ)

[
log

p(θ, D)

q(θ)
− log p(D)

]
= log p(D)− Eq(θ)

[
p(θ,D)

q(θ)

]
(4)

Note that log p(D) comes from the fact that
Eq(θ)[log p(D)] = log p(D) (since the term does
not depend on q(θ)). By rearangging the Equation (4) and
discarding the KL-divergence term we obtain the lower
bound of p(D)

LELBO = Eq(θ)
[
p(θ,D)

q(θ)

]
(5)

This lower bound is known as evidence lower bound
(ELBO). Observe that maximizing ELBO is equivalent to
minimizing the KL-divergence. Thus if KL[q(θ) ‖ p(θ)] =
0 then we have LELBO = log p(D). Figure 2 illustrates the
bound between ELBO and log p(D).

Figure 2. The illustration that shows the bound between log p(D)
and ELBO. The gap between those two is represented by the
KL-divergence (Li, 2020). When KL[q(θ) ‖ p(θ|D)] = 0 then
LELBO = log p(D).

We can also derive the variational objective by defining
p(D) as the integration of joint probability p(θ,D). Fur-
thermore, we involve Jensen’s inequality to derive the ob-
jective. Let f be a convex function and X be a random
variable which is the input for f . Then the function f sat-
isfies f(E[X]) ≤ E[f(X)], known as Jensen’s inequality
(Bishop, 2007). Subsequently, if f is a concave function
then f(E[X]) ≥ E[f(X)]. By combining all the informa-
tion, we obtain LELBO as follows:

log p(D) = log

∫
p(θ,D) dθ

= log

∫
p(θ,D) q(θ)

q(θ)
dθ

= logEq(θ)
[
p(θ, D)

q(θ)

]
≥ Eq(θ)

[
log

p(θ, D)

q(θ)

]
:= LELBO (6)

Observe that we augment the variational distribution q(θ) in
the second row. Since logarithm is a concave function, then
it enjoys the Jensen’s inequality. Performing this inequality
will obtain LELBO.

3. Mean-Field Variational Inference (MFVI)
In the real-world application, we deal with high dimensional
distribution. Such distribution is represented by multivariate
parameters θ. The mean-field variational inference (MFVI)
is introduced to approximate that kind of distribution. The
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idea of MFVI originally comes from the mean-field theory
of physics (Hogan, 2002). Let q(θ) be a variational distribu-
tion where θ is a K-variate vector. Mean-field variational
inference assumes that each component θi is independent
one each other. Therefore we can express q(θ) as a product
of q(θj). Mathematically, we can write q(θ) as:

q(θ) =

K∏
j=1

qφi(θi) (7)

To give an example, suppose that p(z) is a 2-variate Gaus-
sian distribution parameterized by meanµ and covariance Λ.
Mathematically, we can write p(z) = N (z |µ,Λ−1). Fol-
lowing Equation (7), we have q(z) that approximates p(z)
such that q(z) = q(z1) q(z2), where q(z1) = N (µ, σ−11 )
and q(z2) = N (µ2, σ

−1
2 ) are a univariate Gaussian distribu-

tion. Figure 3 illustrates the principle of MFVI.

Figure 3. The illustration of MFVI (Bishop, 2007). The green cur-
vature denotes the multivariate Gaussian distribution p(z). The
red curvature denotes the mean-field variational distribution q(z)
which comprises two independent univariate Gaussian distribu-
tions.

In order to derive the variational objective, we combine
Equation (5) and Equation (7). Furthermore, we express
LELBO by separating a particular θj from the other compo-
nents θ¬j (Jordan et al., 1999). Mathematically, we can
write ELBO as:

LELBO =

∫
q(θj)Eq(θ¬j) [log p(θj , D|θ¬j)] dθj

−
∫
q(θj) log p(θj)dθj + cj (8)

, with cj denotes the constant. The motivation of sepa-
rating the component is for ease of optimization. Recall
that we rely on the optimization process to obtain an ideal
variational distribution q. In the case of MFVI, we utilize
coordinate-ascent to perform the optimization (Jordan et al.,
1999). This optimization method works in a greedy man-
ner by optimizing each component one by one. For each
component, we fixed the other components and find the

best solution for the interest component. For a particular
component θj , we can write the optimal solution as:

q∗(θj) ∝ exp(Eq(θ¬j) [log p(θj |D, θ¬j)]) (9)

with exp denotes the exponentiation w.r.t. natural number
e.

4. Stochastic Variational Inference
One of the biggest challenges of variational inference is to
scale the method on big dataset. Suppose that we have M
observed data xi, written as x = {xi}Mi=1 and the corre-
sponding local parameter ξi, written as ξ = {ξi}Mi=1. We
assume that M is very large (e.g. millions). Furthermore,
we also have a global parameter θ which affects the proba-
bility of the local parameter and the observed data. Figure 4
shows the graphical model of the described problem.

Figure 4. The graphical model of M observed data xi (gray
shaded), each depends on the local parameter ξi and the global pa-
rameter θ (Li, 2020). For simplification, we use plate to represent
all M observed data and local parameters. The plate is denoted by
the rectangle that covers xi and ξi.

Recall that ELBO requires the joint distribution between
the observed data and the parameter (Equation (5)). From
Figure 4, we can write p(θ, ξ,x) as:

p(θ, ξ,x) = p(θ)

M∏
i=1

p(ξi | θ) p(xi | ξi, θ) (10)

Subsequently, by substituting Equation (10) into Equation
(5) we obtain:
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LELBO = Eq
[
log

p(θ, ξ,x)

q(θ, ξ)

]
= Eq

[
log

p(θ)
∏M
i=1 p(ξi | θ) p(xi | ξi, θ)
q(θ)

∏M
i=1 q(ξi)

]

= Eq
[
log

p(θ)

q(θ)

]
+

M∑
i=1

Eq
[
log

p(ξi | θ) p(xi | ξi, θ)
q(ξi)

]
(11)

For simplicity, we exclude the parameters of q. Using the
sum property of logarithm, we decompose the second row
to obtain the third row. When M is very large, the compu-
tation might not be affordable. For K-variate ξ, the time
complexity of a single iteration coordinate-ascent which in-
volves M observed data isO(MK). Fortunately, stochastic
variational inference (SVI) can help estimating LELBO.

In stochastic method, we assume that M observed variabels
are i.i.d. Based on this assumption, SVI can split M ob-
served data into S subsets, with S � M (Hoffman et al.,
2013). We call the subset a mini-batch. Each mini-batch
consists of M

S observed data. By incorporating the mini-
batch into Equation (10), we can write SVI as:

L̂ELBO = Eq
[
log

p(θ)

q(θ)

]
+
M

S

S∑
i=1

Eq
[
log

p(ξi | θ) p(xi | ξi, θ)
q(ξi)

]
(12)

When S = M , we have an ordinary/full-batch variational
inference. Choosing the right S is a trade-off in SVI. Larger
S produces a more accurate estimation of LELBO but re-
quires more computation cost. Reciprocally, having a small
S requires less computation cost but produces more noisy
estimation in return.

The optimization of LELBO can be done through coordinate
ascent or gradient ascent. Gradient ascent requires the gra-
dient ∇φ LELBO to update the parameters φ.

∇φ LELBO = ∇φ Eq
[
log

p(θ)

q(θ)

]
+

M∑
i=1

Eq
[
∇φ log

p(ξi | θ) p(xi | ξi, θ)
q(ξi)

]
(13)

Since SVI splits the observed data into mini-batches, the
gradient turns out into stochastic gradient ∇φ L̂ELBO. In-
stead of taking the full-batch gradient of all M observed

data, stochastic gradient takes the mini-batch gradient of
M
S variables (Zhang et al., 2017). If the variance of each

mini-batch gradient for any samples is low enough, then
the average of the mini-batch gradient will converge to the
full-batch gradient.

∇φ L̂ELBO = ∇φ Eq
[
log

p(θ)

q(θ)

]
+
M

S

S∑
i=1

Eq(θ)
[
∇φ log

p(ξi | θ) p(xi | ξi, θ)
q(ξi)

]
(14)

Finally, we can write stochastic gradient ascent as:

φ← φ+ α∇φL̂ELBO (15)

with α ∈ R > 0 denotes the learning rate which scales
the gradient. Another method is to update the parameters
using natural gradient. Natural gradient considers the in-
formation geometry of the variational parameters (Amari,
1998). They are obtained by multiplying∇φLELBO with the
inverse Fisher information matrix. However, SVI is limited
to conjugate exponential family models. Therefore, SVI can
not handle non-conjugate model.

5. Black-Box Variational Inference
In this section, we introduce black-box variational infer-
ence (BBVI) which is more general than SVI. Black-box
variational inference can deal with non-conjugate model
by incorporating Monte Carlo estimation and the gradient
estimator method.

Let f be a function which takes input x. Furthermore, sup-
pose that x comes from probability distribution p(x). Monte
Carlo estimation method allows us to compute the expecta-
tion Ep(x)[f(x)] by takingK samples xi from p(x) (Bishop,
2007). We estimate the expectation by taking the average of
f(xi). Algorithm 1 provides the complete steps of Monte
Carlo estimation method.

Algorithm 1 Monte Carlo Estimation
- To approximate : Ep(x)[f(x)]
- Sample x1, · · · , xK ∼ p(x)
- Evaluate f(xi) for each xi
- Compute Ep(x)[f(x)] ≈ 1

K

∑K
i=1 f(xi)

The second recipe to build BBVI is gradient estimator
method. This method allows us to compute both conju-
gate and non-conjugate model. In this paper, we explain
two gradient estimators method: REINFORCE gradient and
reparameterization trick.
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5.1. REINFORCE Gradient

First, we introduce the log-derivative trick which is the key
of deriving REINFORCE gradient. Given log pθ(x), we can
derive ∇θ pθ(x) as:

∇θ log pθ(x) =
1

pθ(x)
∇θ pθ(x)

∇θ pθ(x) = pθ(x)∇θ log pθ(x) (16)

The first row is obtained by applying chain rule. We end
up with Equation (16) by multiplying both sides with pθ(x).
By combining Equation (16) and the gradient of Equation
(5), we derive REINFORCE gradient (Williams, 1992; Li,
2020) as:

∇φLELBO = ∇φ Eqφ(θ)
[
log

p(θ, D)

qφ(θ)

]
=

∫
∇φ

{
qφ(θ) log

p(θ,D)

qφ(θ)

}
dθ

=

∫
∇φ qφ(θ) log

p(θ,D)

qφ(θ)

+

∫
qφ(θ)∇φ log

p(θ,D)

qφ(θ)
dθ

=

∫
qφ(θ)∇φ log qφ(θ) log

p(θ, D)

qφ(θ)
dθ

−
∫
∇φ qφ(θ) dθ

= Eqφ(θ)
[
∇φ log qφ(θ) log

p(θ, D)

qφ(θ)

]
(17)

with

∇φ log
p(θ, D)

qφ(θ)
=

qφ(θ)

p(θ,D)

−p(θ, D)

qφ(θ)2
∇φ qφ(θ) (18)

and

∫
∇φ qφ(θ) dθ = ∇φ

∫
qφ(θ) dθ = ∇φ 1 = 0 (19)

We acquire Equation (18) by performing the chain rule gra-
dient. By using the fact that we can pull out the gradient
outside the expectation and the integral of probability distri-
bution equals to one, we obtain Equation (19). We obtain
the third row of Equation (17) by performing partial deriva-
tive. Subsequently, we substitute Equation (16) into the first
term and Equation (18) into the second term of third row to

obtain the fourth row. Incorporating (19) into the fourth row,
we are completely derive the REINFORCE gradient method.
Finally, we combine REINFORCE gradient method with
Monte Carlo Estimation to obtain a complete black-box vari-
ational inference (Ranganath et al., 2014). Specifically, this
BBVI aims to estimate Eqφ(θ)

[
∇φ log qφ(θ) log p(θ,D)

qφ(θ)

]
.

Algorithm (2) provides a complete steps to perform BBVI.

Algorithm 2 Black-Box Variational Inference
- Sample θ1, · · · , θK ∼ qφ(θ)

- Evaluate∇φ log qφ(θi) log p(θi, D)
qφ(θi)

for each θi

- Compute∇L̂ELBO = 1
K

∑K
i=1 ∇φ log qφ(θi) log p(θi,D)

qφ(θi)

5.2. Reparameterization Trick

Besides REINFORCE gradient, another common gradient
estimator method is the reparameterization trick. Suppose
that the variational distribution qφ(θ) is a Gaussian distribu-
tion, parameterized by µ and σ. Reparameterization trick
suggests a function g that transforms a noise ε to express
θ (Kingma & Welling, 2014). This function multiplies ε
with σ and adds the result into µ. Commonly, we choose
ε comes from the standard Gaussian distribution. Since
the variational parameters φ are static, we can tune φ via
gradient-based optimization. Specifically, we can perform
back-propagation to obtain the variational parameters φ.
Figure (5) illustrates the reparameterization trick.

θ ∼ N (µ, σ2)

ε ∼ r(ε) = N (0, 1)

θ = g(ε, φ) = µ+ σε (20)

Figure 5. Illustration of reparameterization trick (Kingma &
Welling, 2014). Function f requires θ. We generate θ through
reparameterization trick. This trick enables us to compute the
gradient of function f w.r.t. the variational parameters φ.

Incorporating Equation (20), we can express the ELBO as
follows:
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LELBO = Er(ε)
[
log

p(g(ε, φ), D)

qφ(g(ε, φ))

]
(21)

Observe that we replace the expectation over qφ with the
expectation over ε. Subsequently, we can write ∇φ LELBO
as:

∇φLELBO = ∇φEr(ε)
[
log

p(g(ε, φ), D)

qφ(g(ε, φ))

]
= Er(ε)

[
∇φ log

p(g(ε, φ), D)

qφ(g(ε, φ))

]
(22)

With the help of Monte Carlo estimation, we obtain the
black-box gradient estimator as:

∇φ L̂ =
1

K

K∑
i=1

∇φ log
p(g(εk, φ), D)

qφ(g(εk, φ))
, εk ∼ r(ε) (23)

Observe that for every k, we sample εk to generate θk.

5.3. Variance Reduction Method for Black-Box
Variational Inference

The main challenge of REINFORCE gradient method is
that this method has a high variance (Li, 2020). This con-
dition leads to an inaccurate ELBO estimation. There are
two approaches to solve the issue. The first approach is to
use low variance unbiased estimators with control variance.
Another approach is using a biased estimator to enable a
reparameterization trick. In this paper, we only discuss the
first method.

We start with the control variance method (Paisley et al.,
2012). Suppose that we want to estimate a function F (θ)
with Monte Carlo method. Mathematically, we can write
Eq(θ)[F (θ)] ≈ 1

K

∑K
i=1 F (θk), θk ∼ q(θ) (for simplic-

ity, we exclude the parameters of q). Now, we define a
control variate function G(θ) which possesses two prop-
erties. The first property is that Vq(θ)[G(θ)] < ∞, with
V [.] denotes the variance. Another property is Eq(θ)[G(θ)]
known or fast computable. Using F (θ) and G(θ), we con-
struct a new function F̂ (θ) to approximate Eq(θ)[F (θ)] ≈
1
K

∑K
i=1 F̂ (θk), θk ∼ q(θ). Mathematically, we can write

F̂ (θ) as:

F̂ (θ) = F (θ)−G(θ) + Eq(θ) [G(θ)] (24)

Since computing Eq(θ)[G(θ)] is relatively fast, then com-
puting F̂ (θ) does not affect the computation time too much.
Also, it can be shown that Eq(θ)[F̂ (θ)] = Eq(θ)[F (θ)],

which means that F̂ (θ) is an unbiased estimator of F (θ).
By the properties of variance, we can write the variance
Vq(θ)(F̂ (θ)) as:

Vq(θ)[F̂ (θ)] = Vq(θ)[F (θ)] + Vq(θ)[G(θ)]

− 2Covq(θ)[F (θ), G(θ)] (25)

From Equation (25), observe that if F (θ) and G(θ) is
strongly correlated (the covariance of F (θ) and G(θ) is
high), then Vq(θ)[G(θ)] − 2Covq(θ)[F (θ), G(θ)] will be
negative. Therefore, we have V ar[F (θ̂)] < V ar[F (θ)] .
In this fashion, we are successfully estimate F (θ) while
reducing the variance at the same time.

Now, let us use trick for REINFORCE gradient. Let F (θ) =

f(θ)∇φ log qφ(θ), with f(θ) = log p(D,θ)
qφ(θ)

. Subsequently,
we define control variate function G(θ) = g(θ) log qφ(θ).
For convenience, we define g(θ) later. Following Equation
(25), we can write the new estimator function F̂ (θ) as:

F̂ (θ) = (f(θ)− g(θ))∇φ log qφ(θ) + Eqφ(θ)[G(θ)]

(26)

Now, let us set g(θ) = b. Using the log derivative trick, we
obtain the expectation Eq(θ) as follows:

Eq(θ) [G(θ)] = bEq(θ)[∇φ log q(θ)]

= b∇φ
∫
qφ(θ) dθ

= b∇φ1 = 0

Since the expectation of G(θ) is zero, then Equation (26)
turns into:

F̂ (θ) = ∆(θ)∇φ log qφ(θ) (27)

Intuitively, this method works as follows. Suppose that we
have θ1, θ2 ∼ qφ(θ). Furthermore, suppose that f(θ1) −
g(θ1) > 0 and f(θ2) − g(θ2) < 0. This method tries to
find qφ that increases the probability of θ1 while decreasing
the probability of θ2. Another common choice of g(θ) is
based on Taylor expansion (Gu et al., 2015), that is g(θ) =
f(θ0) +∇θ0 f(θ0)(θ − θ0).

6. Amortized Inference
Despite being able to handle a large amount of data, SVI
still suffers from the memory issue. Note that we need to op-
timize the variational parameters φi of the latent variable zi
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independently. This can be memory-consuming, especially
when we have a huge amount of observed data. Instead,
amortized inference views the variational parameters φ as
a function which takes xi as the input. Therefore the latent
variables zi depends on xi. Figure (6) shows the illustration
of amortized inference.

Figure 6. left Probabilistic graphical model of ordinary SVI. Ob-
serve that each latent variable zi depends on variational parameters
φi (Li, 2020). right Probabilistic graphical model of amortized
inference. The variational parameters φ is now outside the plate.
Therefore, the variational parameters φ becomes a global parame-
ter. Furthermore, the latent variables zi now depends on xi.

Based on Figure (6), we aim to derive LELBO for amortized
inference case. We start with the definition of ELBO in
term of KL-divergence (Equation (4)), LELBO = log p(x)−
KL[q(z) ‖ p(z|x)]. Since zi depends on xi, we replace
q(z) with q(z|x) (Kingma & Welling, 2014; Rezende et al.,
2014). Therefore, we can write Lamortized as:

Lamortized = log p(x)−KL[q(z|x) ‖ p(z|x)]

= Eqφ(z | x) [log pθ(x | z)]
−KL [q(z |x) ‖ p(z |x)] (28)

One of the renowned applications of amortized inference
is the variational autoencoder (VAE) (Kingma & Welling,
2014). VAE feeds image x through the encoder E and out-
puts qφ(z|x). Subsequently, VAE generates the latent vari-
able z by performing a reparameterization trick on the dis-
tribution qφ(z|x). The decoder takes z and outputs pθ(x|z).
Commonly, VAE assumes that qφ(z|x) is following factor-
ized multivariate Gaussian distribution with the parameters
mean µ and . Furthermore, the prior distribution p(z) is
assumed to be a standard Gaussian distribution N (z;0, I).
Figure (7) shows the illustration of VAE. Another applica-
tion of amortized inference including amortized sequential
Monte Carlo (SMC) (Naesseth et al., 2018; Le et al., 2017),
amortized Markov chain Monte Carlo (MCMC) (Li et al.,
2017), and amortized Monte Carlo integration (Golinski
et al., 2019).

Although reducing the computation cost, the amortized in-
ference also leaves a drawback. Naturally, amortized ap-
proximate posterior is sub-optimal (Cremer et al., 2018).

Figure 7. The illustration of variational autoencoder (Li, 2020).
Commonly, VAE assumes that the prior distribution p(z) is follow-
ing standard Gaussian distributionN (z;0, I).

Figure (8) shows the inference result with and without amor-
tization. From that figure, it is obvious that in some cases,
the amortization is far from the true posterior distribution,
especially when the region of the posterior is relatively small
and when the posterior is a mixture distribution.

Figure 8. The limitation of amortized inference (Cremer et al.,
2018). It turns out that amortized inference produces a far result
from the true posterior when the region of the posterior distribution
is small and when the posterior is a mixture distribution.

Furthermore, we can also show the gap of amortized in-
ference by visualizing the bound of log p(x), LELBO and
Lamortized, shown by Figure (9). Unless using a very deep
neural network as the universal approximator, otherwise
there is a gap between the optimal amortized inference re-
sult and the optimal individual inference result.

Figure 9. The gap between LELBO and Lamortized (Li, 2020). Com-
monly, we have LELBO ≥ Lamortized since there is an amortization
gap.

One of the solution to close the amortization gap is by intro-
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ducing the refinement method (Marino et al., 2018). This
method starts by initializing qφ(z|x) through the amortized
inference. Then, we run several individual gradient steps to
update the variational parameters φ.

7. Approximate distribution design
In this section, we will discuss four techniques that are com-
monly used to design the approximate distribution. The goal
of the distribution design is to close the gap with the true
posterior distribution. Those techniques include structured
approximation, normalizing flows, auxiliary & mixture dis-
tribution, and Implicit approximate posterior.

7.1. Structured Approximations

Structured approximation distribution suggests grouping
the latent variables that generate the same sequences while
ignoring the dependency between the groups that generate
different sequences. Furthermore, structured approximation
also defines the dependency within latent variables in the
same group (Li, 2020). Figure (10) illustrates the structured
distribution. Given the approximation distribution q with S
groups, we define the structured approximation distribution
as:

Figure 10. The structured distribution consists of two groups with
three and two members, respectively. There is no dependency
between groups.

q(z) =
∏
s

q(zs)

q(zs) = q({zi}i∈s)

with q(zs) defines the dependency within the latent variables
that lies in group s.

7.2. Normalizing Flows

Researches use the normalizing flows to obtain a flexible
approximation posterior. This method is based on the se-
quence of invertible function on random variables. Given
an invertible functions f that transforms random variable X
into random variable Y , we want to compute the correspond-
ing density pY given pX . If we map the region in X space
to Y space using f , then we want the corresponding twisted
region in Y to have the same probability mass. On the other

hand, we can think pX(x)dx as the probability mass of
the corresponding region around x. Similarly, pY (y)dy is
the probability mass of the corresponding region around y.
Therefore, we want to have:

pX(y)dy = pY (x)dx (29)

Based on Equation (29), we can write the density pX and
pY as :

pY (y) = pX(x)

∣∣∣∣det(
dx

dy
)

∣∣∣∣ (30)

pX(x) = pY (y)

∣∣∣∣det(
dy

dx
)

∣∣∣∣ (31)

The determinant term is responsible to represent the volume
changes. Equation (30) and Equation (31) are known as the
change of variable formula.

Now, we aim to build a variational inference with normal-
izing flows (Rezende & Mohamed, 2015). We start with
simple distribution q0 = N (z0; 0, I) and an invertible func-
tion parameterized by φ which maps z = fφ(z0). By the
change of variable we can write q(z) as:

q(z) = q0(z0)

∣∣∣∣det(
dz

dz0
)

∣∣∣∣−1 (32)

with z0 = f−1φ (z). Recall that we can write LELBO =
Eq(z)[log p(x|z)+log p(z)− log q(z)]. Substituting Equa-
tion (32) and the definition of z into LELBO, we obtain:

L(q(z)) = Eq(z) [log p(x | z) + log p(z)− log q(z)]

= Eq(z)

[
log p(x, z)− log q0(z0)

∣∣∣∣det(
dz

dz0
)

∣∣∣∣−1
]

= Eq(z) [log p(x, fφ(z0))− log q0(z0) ]

+ Eq(z)

[
log

∣∣∣∣det(
dz

dz0
)

∣∣∣∣−1
]

(33)

The challenge is to define fφ such that log
∣∣∣det(

dfφ
dz0

)
∣∣∣ is

easy to compute. Common implementation takes chain
simple invertible mappings to allow flexibility.

fφ = fK ◦ · · · ◦ f1, fk(.) = fφk(.), φ = φk
K
i=1

For each simple mapping, we hope that the Jacobian log
determinant is fast to compute, such that:
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log

∣∣∣∣det(
dfφ
dz0

)

∣∣∣∣ =

K∑
k=1

log

∣∣∣∣det(
dfφk
dzk−1

)

∣∣∣∣
7.3. Auxiliary Variables and Mixture Distributions

We can construct a mixture distribution q(θ) by introducing
an auxiliary distribution q(a) such that:

q(θ) =

∫
q(θ|a)q(a)da (34)

One of the classic example is the Gaussian mixture dis-
tribution (Li, 2020). We start by defining the auxiliary
distribution qa as a categorical distribution: q ∼ q(a) =
Cat(π1, · · · , πk). Conditioned on a, θ is Gaussian dis-
tributed: θ ∼ q(θ|a) = N (θ;ma,Σa). Here, m and Σ
denote the mean and the covariance, respectively. If we
have many components of a, we can build a very flexible
and accurate approximation distribution. However, perform-
ing variational inference with the mixture-distribution q
can result into an intractable problem due to the fact that
q(θ) =

∫
q(θ|a)q(a)da.

The solution is introducing an auxiliary variational lower
bound L(φ, r) with an auxiliary distribution r(a|θ) (Agakov
& Barber, 2004). Mathematically, we can write:

L(φ, r) = Eq(θ,a)[log p(D|θ)]−KL[q(θ, a)‖p(θ)r(a|θ)]
(35)

Figure 11 shows the gap between ELBO and auxiliary vari-
ational lower bound. This method aims to optimize r(a|θ)
to close the gap shown in the Figure (11).

7.4. Implicit Approximate Posteriors

In modern method, we rely on Monte Carlo estimation to
perform Bayesian inference. This estimation requires fast
sampling process from the distribution q. We can replace q
with a neural network such that we do not need the analytical
form of q anymore (Li, 2020). We derive the variational
objective by expressing ELBO as:

Lφ = Eq(θ)[log p(D|θ)]− Eq(θ)
[
log

p(θ)

q(θ)

]
(36)

The first term can be solve easily using Monte Carlo estima-
tion. However, since q is now a neural network, the second
term becomes intractable. Instead, the research introduces
a discriminator that aims to diffrentiate whether θ comes
from p or q (Li & Turner, 2017). Figure (12) shows the
illustration of implicit approximate posterior.

8. Objective Function Design
In this section, we will discuss the objective function design
for fitting the approximate posterior distribution. Variational
inference mainly requires three components: the posterior
distribution p, the variational distribution q, and the KL
divergence KL[p ‖ q]. We rely on KL-divergence as the
criterion to optimize q towards p. However, KL-divergence
often suffers from mode seeking property which leads q
to underestimate the variance of the true distribution p (Li,
2020). This condition can be dangerous in real world ap-
plication which requires a calibrated uncertainty. Some
researches has been conducted to see the impact of using
different divergence.

8.1. Rényi α-Divergence

The first approach is to use α-divergence. Given distribution
p(θ), q(θ), and the parameter α, the α-divergence can be
written as:

Dα[p(θ)‖q(θ)] =
1

α− 1
log

∫
p(θ)α q(θ)1−αdθ (37)

with α > 0, α 6= 1. Observe that when lim
α→1

, we have

Dα[p(θ) ‖ q(θ)] = KL[p(θ) ‖ q(θ)]. Expressing LELBO by
replacing KL-divergence with α-divergence we obtain vari-
ational Rényi bound (Li & Turner, 2016):

Lα =
1

α− 1
Eq(θ)

[(
log

p(D, θ)

q(θ)

)1−α
]

= log p(D)−Dα [q(θ) ‖ p(θ |D)] (38)

when lim
α→1

, we have Lα = LELBO. Therefore, Lα is a gener-
alization of variational inference. Subsequently, Figure (13)
shows the inference result of variational Rényi bound with
different α. The black ellipsoid denotes the true posterior,
which is a correlated Gaussian distribution. The circles with
different colors denote the approximation with different α.
We can conclude that different α can affect the approxi-
mation results. For example choosing α ≥ 1 leads to an
approximation that underestimates the variance of the true
posterior. In general, choosing α too big or too small leads
to an exteremely big variance.

8.2. Perturbation in Black-Box Variational Inference
(PBBVI)

We start by defining the log p(x) as the expectation over
qφ(z) of the log density ratio p(x,z)

qφ(z)
. Subsequently, PBBVI

(Bamler et al., 2017) introduces a function V (x, z):
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Figure 11. The inference gap as the result of involving auxiliary distribution r(a | θ) (Li, 2020)

Figure 12. Implicit approximate posterior which relies on a dis-
criminator (Li & Turner, 2017). The discriminator is responsible
to differentiate whether θ comes from p or q.

Figure 13. The approximation results of variational Rényi bound
with different α (Li & Turner, 2016)

V (x, z) ≡ log qφ(z)− log p(x, z) (39)

Combining the definition of log p(x) with Equation (39),
we can write log p(x) as follows:

log p(x) = log

(
Eqφ(z)

[
p(x, z)

qφ(z)

])
= logEqφ(z) [exp(−βV (x, z))] (40)

Note that we have an auxiliary parameter β in Equation (41).
If we set β = 1, then the equation holds. Now, we aim to
take the Taylor expansion of log p(x) around β = 1:

log p(x) ≈ Eqφ [−V ] +
1

2

[
(V − Eqφ [−V ])2

]
+

− 1

3!

[
(V − Eqφ [−V ])3

]
+ · · · (41)

In particular, if we truncate the expansion at the first term,
we are obtaining the familiar ELBO:

Eqφ(z)[−V (x, z)] = Eqφ(z)[log p(x, z)− log qφ(z)]

(42)

Generally, truncating the Taylor expansion in the odd term
provides a lower bound approximation of the model evi-
dence p(x). Figure (14) shows the comparison of PBBVI
approximation, with α-divergence. It turns out if we trun-
cate in a higher order e.g. 3, PBBVI results a better ap-
proximation comparing to standard variational inference,
which is equivalent to truncating the expansion in one term.
Results also show that PBBVI has a better bias-variance
trade-off comparing to α-divergence. The remain challenge
is to find the ideal position to truncate the expansion.
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Figure 14. The approximation results of PBBVI and α-divergence.

8.3. f -Divergence

There is a more flexible divergence than α-divergence called
f -divergence (Wan et al., 2020). Mathematically, we can
write f -divergence Df [p(θ) ‖ qφ(θ)] as:

Df [p(θ) ‖ qφ(θ)] = Eqφ(θ)
[
f(

p(θ)

qφ(θ)
)− f(1)

]
(43)

Here, we can choose function f to be any convex function.
Different f yields different divergence.

f(t) = − log t→ KL[q ‖ p]
f(t) = t log t→ KL[p ‖ q]

f(t) =
tα

α(α− 1)
→ Dα[p ‖ q]

8.4. Integral Probability Metric (IPM)

Integral probability metric requires a test function f to de-
scribe the difference between the variational distribution
q(z) and the true posterior p(z|x) (Li, 2020). Specifically,
IPM aims to find the best test function f∗ ∈ F that maxi-
mize the difference between q(z) and p(z|x). Mathemati-
cally, we can write:

D[q(z), p(z |x)] = sup
f∈F

∣∣Eq(z)[f(z)]− Ep(z | x)[f(z)]
∣∣

(44)

different test function f defines a different integral proba-
bility metric. One of the special case of integral probability
metric is Stein discrepancy (Liu & Wang, 2016). Stein
discrepancy only requires sample z ∼ p(z) and the score
function of the posterior, written as:

∇z log p(z |x) = ∇z log p(z, x) (45)

Finally, we can write Stein discrepancy as:

S[q(z), p(z |x)]

= sup
f∈F

∣∣Eq(z)[∇z log p(z, x)T f(z) +∇Tz f(z)]
∣∣ (46)

Stein discrepancy has been applied not only for approximate
inference, but also for goodness of fit and fitting the entropy
model.

9. Conclusion
In this paper, we review the definition of various form of
variational inference method. Specifically, we review varia-
tional inference, mean-field variational inference, stochastic
variational inference, and black-box variational inference.
Later, we also discuss recent techniques to improve the
approximation result. In general, we can improve the ap-
proximation result by either designing a new variational
distribution or designing a new objective function.
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