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This note aims to cover some materials on the Gaussian process. The pri-
mary references are Gaussian Process for Machine Learning by C. E. Rasmussen
and CS-E4895 by Arno Solin.

1 Multivariate Normal Distribution

1.1 Linear transformation theorem for the multivariate
normal distribution

Let x follow a multivariate normal distribution:

x ∼ N (µ,Σ) (1)

Then, any affine transformation of x is also multivariate normally distributed:

y = Ax+ b ∼ N (Aµ+ b, AΣA⊤) (2)

Proof:
The moment-generating function of random vector x is

Mx(t) = E[exp(tTx)] (3)

and therefore, the moment-generating function of the random vector y is given
by

My(t) = E
[
exp(tT (Ax+ b))

]
= E[exp(t⊤Ax) exp(t⊤b)]
= exp(t⊤b)E[exp(t⊤Ax)]
= exp(t⊤b)Mx(A

⊤t) (4)

The moment-generating function of the multivariate normal distribution is

Mx(t) = exp(t⊤µ+
1

2
t⊤Σt) (5)

and therefore, the moment-generating function of random vector y becomes

My(t) = exp(t⊤(Aµ+ b) +
1

2
t⊤AΣA⊤t) (6)

Since the moment-generating function and the probability density function of a
random variable are equivalent, this demonstrates that y follows a multivariate
normal distribution with mean Aµ+ b and covariance AΣA⊤.
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1.2 Marginal distribution of the multivariate normal dis-
tribution

Let x follow a multivariate normal distribution:

x ∼ N (µ,Σ) (7)

Then, the marginal distribution of any subset vector xs is also a multivariate
normal distribution.

xs ∼ N (µs,Σs) (8)

where µs drops the irrelevant variables (the ones not in the subset, i.e., marginal-
ized out) from the mean vector µ and Σs drops the corresponding rows and
columns from the covariance matrix Σ.

Proof: Define an m × n subset matrix S such that sij = 1, if the j−th el-
ement in xs corresponds to the i−th element in x, and sij = 0 otherwise. Then,

xs = Sx (9)

and we can apply the linear transformation theorem to give

xs ∼ N (Sµ, SΣS⊤) (10)

Finally, we see that Sµ = µs and SΣS⊤ = Σs

1.3 Conditional distribution of the multivariate normal
distribution

Let x follow a multivariate normal distribution

x ∼ N (µ,Σ) (11)

Then, the conditional distribution of any subset vector x1, given the complement
vector x2, is also a multivariate normal distribution

µ1|2 = µ1 +Σ12Σ
−1
22 (x2 − µ2)

Σ1|2 = Σ11 − Σ12Σ
−1
22 Σ21 (12)

with block-wise mean and covariance defined as:

µ =

[
µ1

µ2

]
Σ =

[
Σ11 Σ12

Σ21 Σ22

]
(13)

Proof: Without loss of generality, we assume that in parallel to 13,

x =

[
x1
x2

]
(14)
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where x1 ∈ Rn1×1, x2 ∈ Rn2×1, and x ∈ Rn×1. The joint distribution of x1 and
x2 is

x ∼ N (µ,Σ) (15)

Moreover, the marginal distribution of x2 follows from 11 and 13 as

x2 ∼ N (µ2,Σ22) (16)

According to conditional probability, it holds that

p(x1|x2) =
p(x1, x2)

p(x2)

=
N (µ,Σ)

N (µ2,Σ22)
(17)

Using the probability density of multivariate-normal, this becomes

p(x1|x2) =
1/
√
(2π)n|Σ| exp

(
− 1

2 (x− µ)⊤Σ−1(x− µ)
)

1/
√
(2π)n2 |Σ22| exp

(
− 1

2 (x− µ2)⊤Σ
−1
22 (x− µ2)

)
= 1/

√
(2π)n−n2

√
|Σ22|
|Σ|

exp

(
−1

2
(x− µ)⊤Σ−1(x− µ) +

1

2
(x− µ2)

⊤Σ−1
22 (x− µ2)

)
(18)

Writing the inverse Σ as

Σ−1 =

[
Σ11 Σ12

Σ21 Σ22

]
(19)

and applying 13 to 18, we obtain:

p(x1|x2) = 1/
√

(2π)n−n2

√
|Σ22|
|Σ|

exp(−1

2

([
x1
x2

]
−

[
µ1

µ2

])⊤ [
Σ11 Σ12

Σ21 Σ22

]([
x1
x2

]
−

[
µ1

µ2

])
(20)

+
1

2
(x− µ2)

⊤Σ−1
22 (x− µ2))

Multiplying within 20, we have

p(x1|x2) = 1/
√
(2π)n−n2

√
|Σ22|
|Σ|

exp(−1

2
((x1 − µ1)

⊤Σ11(x1 − µ1) + 2(x1 − µ1)Σ
12(x2 − µ2)

+ (x2 − µ2)
⊤Σ22(x2 − µ2)) +

1

2
(x− µ2)

⊤Σ−1
22 (x− µ2)) (21)

where we have used the fact that Σ12 = Σ21⊤ , because Σ−1 is symmetric. The
inverse of a block matrix is

[
A B
C D

]−1

=

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

]
(22)
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Thus, the inverse of Σ−1 in 19 is[
Σ11 Σ12

Σ21 Σ22

]−1

=

[
(Σ11 − Σ12Σ

−1
22 Σ21)

−1 −(Σ11 − Σ12Σ
−1
22 Σ21)

−1Σ12Σ
−1
22

−Σ−1
22 Σ21(Σ11 − Σ12Σ

−1
22 Σ21)

−1 Σ−1
22 +Σ−1

22 Σ21(Σ11 − Σ12Σ
−1
22 Σ21)

−1Σ12Σ
−1
22

]
(23)

Plugging this into 20, we have

p(x1|x2) =
1√

(2π)n−n2

·

√
|Σ22|
|Σ|

·

exp

[
−1

2

(
(x1 − µ1)

T(Σ11 − Σ12Σ
−1
22 Σ21)

−1(x1 − µ1) −

2(x1 − µ1)
T(Σ11 − Σ12Σ

−1
22 Σ21)

−1Σ12Σ
−1
22 (x2 − µ2)+

(x2 − µ2)
T
[
Σ−1

22 +Σ−1
22 Σ21(Σ11 − Σ12Σ

−1
22 Σ21)

−1Σ12Σ
−1
22

]
(x2 − µ2)

)
+
1

2

(
(x2 − µ2)

TΣ−1
22 (x2 − µ2)

)]
.

(24)

Eliminating some terms, we have

p(x1|x2) =
1√

(2π)n−n2

·

√
|Σ22|
|Σ|

·

exp

[
−1

2

(
(x1 − µ1)

T(Σ11 − Σ12Σ
−1
22 Σ21)

−1(x1 − µ1) −

2(x1 − µ1)
T(Σ11 − Σ12Σ

−1
22 Σ21)

−1Σ12Σ
−1
22 (x2 − µ2)+

(x2 − µ2)
TΣ−1

22 Σ21(Σ11 − Σ12Σ
−1
22 Σ21)

−1Σ12Σ
−1
22 (x2 − µ2)

)]
.

(25)

Rearranging the terms, we have

p(x1|x2) =
1√

(2π)n−n2

·

√
|Σ22|
|Σ|

· exp
[
−1

2
·

[
(x1 − µ1)− Σ12Σ

−1
22 (x2 − µ2)

]T
(Σ11 − Σ12Σ

−1
22 Σ21)

−1
[
(x1 − µ1)− Σ12Σ

−1
22 (x2 − µ2)

]]
=

1√
(2π)n−n2

·

√
|Σ22|
|Σ|

· exp
[
−1

2
·

[
x1 −

(
µ1 +Σ12Σ

−1
22 (x2 − µ2)

)]T
(Σ11 − Σ12Σ

−1
22 Σ21)

−1
[
x1 −

(
µ1 +Σ12Σ

−1
22 (x2 − µ2)

)]]
(26)

where we used the fact that Σ21 = Σ⊤
12. The determinant of a block matrix is

∣∣∣∣A B
C D

∣∣∣∣ = |D| · |A−BD−1C| , (27)

such that we have for Σ that
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∣∣∣∣Σ11 Σ12

Σ21 Σ22

∣∣∣∣ = |Σ22| · |Σ11 − Σ12Σ
−1
22 Σ21| (28)

with this and n− n2 = n1, we finally arrive at

p(x1|x2) =
1√

(2π)n1 |Σ11 − Σ12Σ
−1
22 Σ21|

· exp
[
−1

2
·

[
x1 −

(
µ1 +Σ12Σ

−1
22 (x2 − µ2)

)]T
(Σ11 − Σ12Σ

−1
22 Σ21)

−1
[
x1 −

(
µ1 +Σ12Σ

−1
22 (x2 − µ2)

)]]
(29)

which is the pdf of a multivariate normal distribution

p(x1|x2) = N (x1;µ1|2,Σ1|2) (30)

with mean µ1|2 and covariance Σ1|2 given by 12.

2 The Marginal Likelihood

• Occam’s razor: ”When you have two competing models that produce sim-
ilar predictions, the simpler, the better.” The same concept goes for GP.

• The marginal likelihood p(y|θ) implements a version of Occam’s razor.

• Marginal likelihood for Gaussian likelihood

p(y|θ) =
∫
p(y|f)p(f |θ)df

=

∫
N (y|f , σ2I)N (f |0,K)df

= N (y|0, σ2I+K)

• Then

log p(y|θ) = −N
2
log(2π)︸ ︷︷ ︸

constant

−1

2
log |σ2I+K|︸ ︷︷ ︸

complexity penalty

− 1

2
y⊤(σ2I+K)−1y︸ ︷︷ ︸

data fit

2.1 The Marginal Likelihood Computation

– In practice, we should avoid computing determinants and inverses.

– Step 1: Compute Cholesky factorization of C = σ2I +K such that
C = LL⊤

– Step 2: Compute the log determinant as follows:

log |C| = log |LL⊤| = log |L||L⊤| = log |L|2 = 2 log |L| = 2

N∑
n=1

logLnn
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– Step 3: Compute quadratic term as follows

y⊤C−1y = y⊤(LL⊤)−1y = y⊤L−⊤L−1y = (L−1y)⊤ (L−1y)︸ ︷︷ ︸
=v

= v⊤v

– Step 4: Sum up components

log p(y|θ) = −N
2
log(2π)− 1

2
2

N∑
n=1

logLnn − 1

2
v⊤v

• Note that we never compute the determinant or the inverse of C directly.

3 Kernel Theory

3.1 Hilbert Space

• A vector space V is a set of closed vectors under addition and scalar
multiplication.

• If V is equipped with a norm ∥.∥V ∈ R, it is a norm space.

• A Hilbert space H is a complete inner product space, with inner product
⟨.⟩H and induced norm ∥x∥ =

√
⟨x, x⟩H.

3.2 Kernel Function and Reproducing Kernel Hilbert Space
(RKHS)

• A function k : X × X → R is a kernel function if and only if there exists
a Hilbert space H and a map ϕ : X → H such that:

k(x, y) = ⟨ϕ(x), ϕ(y)⟩ (31)

for all x, y ∈ X .

• Let ϕ : X → RX and let us define:

kx := ϕ(x) = k(x, .) (32)

Therefore, we have kx(y) = k(x, y).

• Let G denote a vector space with span based on the images {kx|x ∈ X},
i.e.,

{G :=

m∑
i=1

αikxi
|αi ∈ R,m ∈ N, xi ∈ X} (33)

• By the definition of the kernel function, the inner product on G is defined
as follows:

⟨kx, ky⟩ := k(x, y) (34)

Recall that kx = k(x, .), hence, ⟨kx, ky⟩ = ⟨k(x, .), k(y, .)⟩.
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• Therefore, for any f, g ∈ G, with f =
∑

i αikxi
and g =

∑
j βjkyj

, we
have:

⟨f, g⟩ = ⟨
∑
i

αikxi
,
∑
j

βjkyj
⟩ (35)

=
∑
ij

αiβj⟨kxi
, kyj

⟩ (36)

=
∑
ij

αiβjk(xi, yj) (37)

• To make G a Hilbert space, we need to make it complete, i.e., ensure all
Cauchy sequences converge.

Definition 1. Let H be a Hilbert space of real function f defined on an index
set X . Then H is called a reproducing kernel Hilbert space endowed with an
inner product ⟨., .⟩H if there exists a kernel function k : X × X → R with the
following properties:

1. For every x ∈ X , kx(y) = k(x, y) as function of y ∈ X belongs to H, and

2. k has the reproducing property.

• Reproducing property:

⟨kx, f⟩ = ⟨kx,
∑
i

αikxi⟩ (38)

=
∑
i

αi⟨kx, kxi
⟩ =

∑
i

k(x, xi) = f(x) (39)

• Moore-Aronszajn theorem: Given a kernel, there is a unique RKHS, Given
an RKHS, there is a unique kernel.

3.3 Representer Theorem

Settings:

• We are given kernel k and denote the corresponding RKHS at H.

• We want to learn a linear function f(x) from a finite data set {(xi, yi)}ni=1

Theorem 1. Consider the risk minimization problem of the form:

min
f∈H

Rn(y, f)︸ ︷︷ ︸
Empirical Risk

+λΩ(∥f∥H)︸ ︷︷ ︸
Regularizer

(40)

where f = {f(x1), · · · , f(xn)},y = {y1, · · · , yn}, and λ is a scaling parameter.
Then 40 always has an optimal solution of the form:

f(x) =

n∑
i=1

αik(xi,x) (41)
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4 Spectral Kernel

4.1 Fourier Transforms

• Fourier transform S(ω) of a function f(x),

S(ω) =

∫ ∞

−∞
f(x) exp(−2πixω)dx (42)

• Inverse Fourier transform f(x) of a spectral density S(ω)

f(x) =

∫ ∞

−∞
S(ω) exp(2πixω)dω (43)

• Euler’s identity:
exp(ix) = cosx+ i sinx (44)

Hence
exp(±2πixω) = cos(2πxω)± i sin(2πxω) (45)

4.2 Fourier Duals

Theorem 2. Bochner’s theorem: Any stationary kernel k : RD → R and its
spectral density S : RD → R are Fourier duals

k(x− x′) ≡ k(τ) =

∫ ∞

−∞
S(ω) exp(2πixω⊤τ)dω

S(ω) =

∫ ∞

−∞
k(τ) exp(−2πixω⊤τ)dτ

5 Marginal Likelihood via Laplace Approxima-
tion

• Marginal likelihood to do model selection:

p(y) =

∫
p(y|f) p(f) df (46)

• Let ψ(f) = log h(f) = log(p(y|f)p(f))

ψ(f) = log p(y|f)− N

2
log 2π − 1

2
log |K| − 1

2
f⊤K−1f (47)

• Second order Taylor approximation around the mode f̂

ψ(f) = ψ(f̂)− 1

2
(f − f̂)⊤A(f − f̂) (48)
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• Substituting back

p(y) ≈ q(y) =

∫
exp(ψ(f̂)− 1

2
(f − f̂)⊤A(f − f̂))df (49)

= exp(ψ(f̂))

∫
exp(−1

2
(f − f̂)⊤A(f − f̂))df (50)

= exp(ψ(f̂))(2π)N/2|A−1|1/2 (51)

= exp(log p(y|f̂)− N

2
log 2π − 1

2
log |K| − 1

2
f̂⊤K−1f̂)

(2π)N/2|A−1|1/2 (52)

• Taking the log of q(y)

log q(y) = log p(y|f̂)− N

2
log 2π − 1

2
log |K| − 1

2
f̂⊤K−1f̂

+
N

2
log 2π +

1

2
log |A|−1 (53)

= log p(y|f̂)− 1

2
log |K| − 1

2
f̂⊤K−1f̂ +

1

2
|A−1| (54)

• We can now use the fact that |A−1| = |A|−1

log q(y) = log p(y|f̂)− 1

2
log |K| − 1

2
f̂⊤K−1f̂ − 1

2
|A| (55)

• Recall that A = K−1 +W

log q(y) = log p(y|f̂)− 1

2
log |K| − 1

2
f̂⊤K−1f̂ − 1

2
|K−1 +W| (56)

• We optimize log q(y) using gradient based methods to choose hyperpa-
rameters.

6 Multi-output GP

6.1 Intrinsic coregionalization model (ICM): two-outputs

• Consider two output f1(x) and f2(x) with x ∈ Rd

• Assume the following generative model:

1. Sample from a GP u(x) ∼ GP(0, k(x,x′)) to obtain u1(x)

2. Obtain f1(x) and f2(x) by linearly transforming u1(x)

f1(x) = a11u(x)

f2(x) = a12u(x)
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6.2 ICM: covariance

• For a fixed value x, we can group f1(x) and f2(x) in a vector f(x)

f(x) =

[
f1(x)
f2(x)

]
We refer to this as a vector-valued function.

• The covariance for f(x) is computed as

cov(f(x), f(x)) = E[f(x)f(x′)⊤]− E[f(x)]E[f(x′)]⊤

• We compute the term E[f(x)f(x′)⊤]

E
[[
f1(x)
f2(x)

] [
f1(x

′) f2(x
′)
]]

=

[
E[f1(x)f1(x′) E[f1(x)f2(x′)
E[f2(x)f1(x′)] E[f2(x)f2(x′)]

]
=

[
(a11)

2E[u1(x)u1(x′)] a11a
1
2E[u1(x)u1(x′)]

a11a
1
2E[u1(x)u1(x′)] (a12)

2E[u1(x)u1(x′)]

]
=

[
(a11) a11a

1
2

a11a
1
2 (a12)

2

]
E[u1(x)u1(x′)]

• The term E[f(x)] is computed as

E
[[
f1(x)
f2(x)

]]
=

[
E[f1(x)]
E[f2(x)]

]
=

[
a11
a12

]
E[u1(x)]

• Putting the terms together, the covariance for f(x) follows[
(a11) a11a

1
2

a11a
1
2 (a12)

2

]
E[u1(x)u1(x′)]−

[
a11
a12

] [
a11 a12

]
E[u1(x)]E[u1(x′)]

• Defining a =
[
a11 a12

]⊤
and B = aa⊤,

cov(f(x), f(x′)) = aa⊤k(x,x′) = B⊤k(x,x′)

6.3 ICM: Observed data

• GivenD1 = {(xi, f1(xi))|i = 1, · · · , N} andD2 = {(xi, f2(xi))|i = 1, · · · , N},
then

[
f1
f2

]
=



f1(x1)
...

f1(xN )
f2(x1)

...
f2(xN )


∼ N

([
0
0

]
,

[
b11K b12K
b21K b22K

])
= N (

[
0
0

]
,B⊗K)

• The inversion rule: (A⊗B)−1 = A−1 ⊗B−1
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7 Computational Complexity of GP Regression

• Data set with N observations, computing posterior for 1 test point:

µ∗ = Kf∗f (Kff + σ2I)−1y

σ2
∗ = Kf∗f∗ −Kf∗f (Kff + σ2I)−1K⊤

f∗f

• Matrix-vector multiplication (mvm): for A ∈ RN×M and b ∈ RM , com-
puting Ab costs O(NM)

• Matrix inverse: for C ∈ RN×N , computing C−1 costs O(N3)

• (Kff + σ2I)−1y scales as O(N3).

8 Approximately solving linear system

8.1 Matrix inverse as quadratic optimization

• Rewrite matrix inverse

v = K̂−1y, K̂ = K+ σ2I

as a linear system:

K̂v − y = 0

• Solve as a quadratic optimization problem:

v∗ = argmin
v

v⊤K̂v − v⊤y

8.2 Conjugate gradient

• Using conjugate gradient to solve the quadratic optimization

1. Iterative method

2. Each step is O(N2)

3. Recovers exact solution after N steps → O(N3)

4. Approximate solution in much fewer steps: less steps.

8.3 Convergence and preconditioning

• Condition number: ratio of largest to smallest eigenvalue λmin(K̂)/λmax(K̂).

• High condition numbers: numerically unstable, slow convergence.

• Improve by preconditioning: Instead of K̂v − y = 0, solve

P−1K̂v −P−1y = 0
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9 Low-rank approximation

• Recall GP marginal log-likelihood:

log p(y|X) = logN (y|0,K+ σ2I)

Assume K to be low rank.

9.1 Approximation by subset

• Let’s randomly pick a subset from training data: Z ∈ RM×Q

• Approximate the covariance matrix K by K̂

K̂ = KzK
−1
zz K

⊤
z ∈ RN×N

Kz = K(X,Z) ∈ RN×M

Kzz = K(Z,Z) ∈ RM×M

• The log-likelihood is approximated by

log p(y|X) = logN (y|0,KzK
−1
zz K

⊤
z + σ2I)

• Furthermore, apply Woodbury matrix identity:

(UCV +A)−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1

(KzK
−1
zz K

⊤
z + σ2I)−1 = σ−2I− σ−4Kz(Kzz + σ−2K⊤

z Kz)
−1K⊤

z

• The complexity reduces to O(NM2).

10 Variational Inference for Sparse GP

10.1 Inducing point methods: the joint model

• Goal: choose a set of inducing points s.t. it contains the same information
as a full data set.

• The augmented model

p(y, f ,u) = p(y|f)p(f ,u) = p(y|f)p(f |u)p(u)

• Recover the original model by marginalizing over u:

p(y, f) =

∫
p(y|f)p(f ,u)du = p(y|f)

∫
p(f ,u)du = p(y|f)p(f)

• Using Gaussian conditional densities:

p(y|f) = N (y|f , σ2I)

p(f |u) = N (f |KnmK−1
mmu, K̂), K̂ = Knn −KnmK−1

mmKmn

p(u) = N (u|0,Kmm)

• Covariance of inducing points: [Kmm]ij = k(zi, zj)

• Cross-covariance between inducing points and training: [Kmn]ij = k(zi, xj)

• Covariance of training points: [Knn]ij = k(xi, xj)
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10.2 Variational Sparse GP

• Variational lower bound of a marginal likelihood:

log p(y|X) = log

∫
f ,u

p(y|f)p(f |u,X,Z)p(u|Z)

≥
∫
f ,u

q(f ,u) log
p(y|f)p(f |u,X,Z)p(u|Z)

q(f ,u)
≡ L

• Defining the variational posterior as follows:

q(f ,u) = p(f |u,X,Z)q(u)
q(u) = N (u|m,S)

• Thus, we have:

L =

∫
f ,u

p(f |u,X,Z)q(u) log p(y|f)((((((p(f |u,X,Z)p(u|Z)
((((((p(f |u,X,Z)q(u)

= ⟨log p(y|f)⟩p(f |u,X,Z)q(u) −KL[q(u)|p(u|Z)]

10.3 Likelihood

• Recall that p(y|f) =
∏N

i=1 p(yi|fi)

Eq(u,f)[log p(y|f)] = Eq(u,f)

[
log

N∏
i=1

p(yi|fi)

]
=

N∑
i=1

Eq(u,f) [log p(yi|fi)]

=

N∑
i=1

∫ ∫
q(u, f) log p(yi|fi) du df

=

N∑
i=1

∫ ∫
p(fi|u)N (u|m,S) log p(yi|fi) du dfi

=

N∑
i=1

∫ ∫
p(fi|u)N (u|m,S) du log p(yi|fi) dfi

• Let
∫
p(fi|u)N (u|m,S) du ≈ q(fi) = N (fi|KimK−1

mmm, K̂ii+KimK−1
mmSK−1

mm)Kmi

• Thus,

Eq(u,f)[log p(y|f)] =
N∑
i=1

∫
q(fi) log p(yi|fi) dfi

13



11 State space GP

11.1 State space representation

• State space representation as a solution to a linear time-invariant stochas-
tic differential equation (SDE):

df = Ffdt+ Ldβ

where β(t) is a vector of a Wiener process.

• Equivalently,
df(t)

dt
= Ff(t) + Lw(t)

The model consists of a drift matrix F ∈ Rm×m, diffusion matrix L ∈
Rm×s, and spectral density matrix of the white noise process Q ∈ Rs×s.

• The initial state is given by a stationary state f(0) ∼ N (0,P∞) which
satisfies

FP∞ +P∞F⊤ + LQcL
⊤ = 0

• The covariance function at the stationary state can be recovered by

κ(t, t′) =

{
P∞ exp((t′ − t)F)⊤ t′ ≥ t
exp((t′ − t)F)P∞ t′ < t

• Spectral density function at the stationary state:

S(ω) = (F+ iωI)−1LQcL
⊤(F− iωI)−⊤

• Discrete state space model:

fi = Ai−1fi−1 + qi−1, qi ∼ N (0,Qi)

Ai = exp(F∆ti)

Qi =

∫ ∆ti

0

exp(F(∆ti − τ))LQcL
⊤ exp(F(∆ti − τ))⊤dτ

∆ti = ti+1 − ti

• If the model is stationary:

Qi = P∞ −AiP∞A⊤
i
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11.2 Sequential GP regression

• Also known as Kalman filter → considers one data point at a time.

• Kalman prediction:

mi|i−1 = Ai−1mi−1|i−1

Pi|i−1 = Ai−1Pi−1|i−1Ai−1 +Qi−1

• Kalman update:

vi = yi −Hmi|i−1

Si = HiPi|i−1H
⊤ + σ2

n

Ki = Pi|i−1H
⊤S−1

i

mi|i = mi|i−1 +Kivi

Pi|i = Pi|i−1 −KiSiK
⊤
i

• To condition all time-marginals on all data, run a backward sweep (Rauch–Tung–Striebel
smoother):

mi+1|i = Aimi|i

Pi+1|i = AiPi|iA
⊤
i +Qi

Gi = Pi|iA
⊤
i P

−1
i+1|i

mi|n = mi|i +Gi(mi+1|n −mi+1|i)

Pi|n = Pi|i −Gi(Pi+1|n −Pi+1|i)G
⊤
i
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