Gaussian Process

Marshal Sinaga - marshal.sinaga@aalto.fi

Last update: April 5, 2024

This note aims to cover some materials on the Gaussian process. The primary references are Gaussian Process for Machine Learning by C. E. Rasmussen and CS-E4895 by Arno Solin.

1 Multivariate Normal Distribution

1.1 Linear transformation theorem for the multivariate normal distribution

Let x follow a multivariate normal distribution:

$$
\begin{equation*}
x \sim \mathcal{N}(\mu, \Sigma) \tag{1}
\end{equation*}
$$

Then, any affine transformation of x is also multivariate normally distributed:

$$
\begin{equation*}
y=A x+b \sim \mathcal{N}\left(A \mu+b, A \Sigma A^{\top}\right) \tag{2}
\end{equation*}
$$

Proof:
The moment-generating function of random vector x is

$$
\begin{equation*}
M_{x}(t)=\mathbb{E}\left[\exp \left(t^{T} x\right)\right] \tag{3}
\end{equation*}
$$

and therefore, the moment-generating function of the random vector y is given by

$$
\begin{align*}
M_{y}(t) & =\mathbb{E}\left[\exp \left(t^{T}(A x+b)\right)\right] \\
& =\mathbb{E}\left[\exp \left(t^{\top} A x\right) \exp \left(t^{\top} b\right)\right] \\
& =\exp \left(t^{\top} b\right) \mathbb{E}\left[\exp \left(t^{\top} A x\right)\right] \\
& =\exp \left(t^{\top} b\right) M_{x}\left(A^{\top} t\right) \tag{4}
\end{align*}
$$

The moment-generating function of the multivariate normal distribution is

$$
\begin{equation*}
M_{x}(t)=\exp \left(t^{\top} \mu+\frac{1}{2} t^{\top} \Sigma t\right) \tag{5}
\end{equation*}
$$

and therefore, the moment-generating function of random vector y becomes

$$
\begin{equation*}
M_{y}(t)=\exp \left(t^{\top}(A \mu+b)+\frac{1}{2} t^{\top} A \Sigma A^{\top} t\right) \tag{6}
\end{equation*}
$$

Since the moment-generating function and the probability density function of a random variable are equivalent, this demonstrates that y follows a multivariate normal distribution with mean $A \mu+b$ and covariance $A \Sigma A^{\top}$.

1.2 Marginal distribution of the multivariate normal distribution

Let x follow a multivariate normal distribution:

$$
\begin{equation*}
x \sim \mathcal{N}(\mu, \Sigma) \tag{7}
\end{equation*}
$$

Then, the marginal distribution of any subset vector x_{s} is also a multivariate normal distribution.

$$
\begin{equation*}
x_{s} \sim \mathcal{N}\left(\mu_{s}, \Sigma_{s}\right) \tag{8}
\end{equation*}
$$

where μ_{s} drops the irrelevant variables (the ones not in the subset, i.e., marginalized out) from the mean vector μ and Σ_{s} drops the corresponding rows and columns from the covariance matrix Σ.

Proof: Define an $m \times n$ subset matrix S such that $s_{i j}=1$, if the $j-$ th element in x_{s} corresponds to the $i-$ th element in x, and $s_{i j}=0$ otherwise. Then,

$$
\begin{equation*}
x_{s}=S x \tag{9}
\end{equation*}
$$

and we can apply the linear transformation theorem to give

$$
\begin{equation*}
x_{s} \sim \mathcal{N}\left(S \mu, S \Sigma S^{\top}\right) \tag{10}
\end{equation*}
$$

Finally, we see that $S \mu=\mu_{s}$ and $S \Sigma S^{\top}=\Sigma_{s}$

1.3 Conditional distribution of the multivariate normal distribution

Let x follow a multivariate normal distribution

$$
\begin{equation*}
x \sim \mathcal{N}(\mu, \Sigma) \tag{11}
\end{equation*}
$$

Then, the conditional distribution of any subset vector x_{1}, given the complement vector x_{2}, is also a multivariate normal distribution

$$
\begin{align*}
& \mu_{1 \mid 2}=\mu_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(x_{2}-\mu_{2}\right) \\
& \Sigma_{1 \mid 2}=\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} \tag{12}
\end{align*}
$$

with block-wise mean and covariance defined as:

$$
\begin{align*}
\mu & =\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right] \\
\Sigma & =\left[\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right] \tag{13}
\end{align*}
$$

Proof: Without loss of generality, we assume that in parallel to 13 ,

$$
x=\left[\begin{array}{l}
x_{1} \tag{14}\\
x_{2}
\end{array}\right]
$$

where $x_{1} \in \mathbb{R}^{n_{1} \times 1}, x_{2} \in \mathbb{R}^{n_{2} \times 1}$, and $x \in \mathbb{R}^{n \times 1}$. The joint distribution of x_{1} and x_{2} is

$$
\begin{equation*}
x \sim \mathcal{N}(\mu, \Sigma) \tag{15}
\end{equation*}
$$

Moreover, the marginal distribution of x_{2} follows from 11 and 13 as

$$
\begin{equation*}
x_{2} \sim \mathcal{N}\left(\mu_{2}, \Sigma_{22}\right) \tag{16}
\end{equation*}
$$

According to conditional probability, it holds that

$$
\begin{align*}
p\left(x_{1} \mid x_{2}\right) & =\frac{p\left(x_{1}, x_{2}\right)}{p\left(x_{2}\right)} \\
& =\frac{\mathcal{N}(\mu, \Sigma)}{\mathcal{N}\left(\mu_{2}, \Sigma_{22}\right)} \tag{17}
\end{align*}
$$

Using the probability density of multivariate-normal, this becomes

$$
\begin{align*}
p\left(x_{1} \mid x_{2}\right) & =\frac{1 / \sqrt{(2 \pi)^{n}|\Sigma|} \exp \left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)}{1 / \sqrt{(2 \pi)^{n_{2}\left|\Sigma_{22}\right|} \exp \left(-\frac{1}{2}\left(x-\mu_{2}\right)^{\top} \Sigma_{22}^{-1}\left(x-\mu_{2}\right)\right)}} \\
& =1 / \sqrt{(2 \pi)^{n-n_{2}}} \sqrt{\frac{\left|\Sigma_{22}\right|}{|\Sigma|}} \exp \left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)+\frac{1}{2}\left(x-\mu_{2}\right)^{\top} \Sigma_{22}^{-1}\left(x-\mu_{2}\right)\right) \tag{18}
\end{align*}
$$

Writing the inverse Σ as

$$
\Sigma^{-1}=\left[\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \tag{19}\\
\Sigma_{21} & \Sigma_{22}
\end{array}\right]
$$

and applying 13 to 18 , we obtain:

$$
p\left(x_{1} \mid x_{2}\right)=1 / \sqrt{(2 \pi)^{n-n_{2}}} \sqrt{\frac{\left|\Sigma_{22}\right|}{|\Sigma|}} \exp \left(-\frac{1}{2}\left(\left[\begin{array}{l}
x_{1} \tag{20}\\
x_{2}
\end{array}\right]-\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right]\right)^{\top}\left[\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right]\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]-\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right]\right)\right.
$$

$$
\left.+\frac{1}{2}\left(x-\mu_{2}\right)^{\top} \Sigma_{22}^{-1}\left(x-\mu_{2}\right)\right)
$$

Multiplying within 20, we have

$$
\begin{align*}
p\left(x_{1} \mid x_{2}\right)= & 1 / \sqrt{(2 \pi)^{n-n_{2}}} \sqrt{\frac{\left|\Sigma_{22}\right|}{|\Sigma|}} \exp \left(-\frac{1}{2}\left(\left(x_{1}-\mu_{1}\right)^{\top} \Sigma^{11}\left(x_{1}-\mu_{1}\right)+2\left(x_{1}-\mu_{1}\right) \Sigma^{12}\left(x_{2}-\mu_{2}\right)\right.\right. \\
& \left.\left.+\left(x_{2}-\mu_{2}\right)^{\top} \Sigma^{22}\left(x_{2}-\mu_{2}\right)\right)+\frac{1}{2}\left(x-\mu_{2}\right)^{\top} \Sigma_{22}^{-1}\left(x-\mu_{2}\right)\right) \tag{21}
\end{align*}
$$

where we have used the fact that $\Sigma^{12}=\Sigma^{21^{\top}}$, because Σ^{-1} is symmetric. The inverse of a block matrix is

$$
\left[\begin{array}{ll}
A & B \tag{22}\\
C & D
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\left(A-B D^{-1} C\right)^{-1} & -\left(A-B D^{-1} C\right)^{-1} B D^{-1} \\
-D^{-1} C\left(A-B D^{-1} C\right)^{-1} & D^{-1}+D^{-1} C\left(A-B D^{-1} C\right)^{-1} B D^{-1}
\end{array}\right]
$$

Thus, the inverse of Σ^{-1} in 19 is

$$
\left[\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \tag{23}\\
\Sigma_{21} & \Sigma_{22}
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\left(\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right)^{-1} & -\left(\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right)^{-1} \Sigma_{12} \Sigma_{22}^{-1} \\
-\Sigma_{22}^{-1} \Sigma_{21}\left(\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right)^{-1} & \Sigma_{22}^{-1}+\Sigma_{22}^{-1} \Sigma_{21}\left(\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right)^{-1} \Sigma_{12} \Sigma_{22}^{-1}
\end{array}\right]
$$

Plugging this into 20, we have

$$
\begin{align*}
p\left(x_{1} \mid x_{2}\right)= & \frac{1}{\sqrt{(2 \pi)^{n-n_{2}}}} \cdot \sqrt{\frac{\left|\Sigma_{22}\right|}{|\Sigma|}} . \\
& \exp \left[-\frac{1}{2}\left(\left(x_{1}-\mu_{1}\right)^{\mathrm{T}}\left(\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right)^{-1}\left(x_{1}-\mu_{1}\right)-\right.\right. \\
& 2\left(x_{1}-\mu_{1}\right)^{\mathrm{T}}\left(\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right)^{-1} \Sigma_{12} \Sigma_{22}^{-1}\left(x_{2}-\mu_{2}\right)+ \\
& \left.\quad\left(x_{2}-\mu_{2}\right)^{\mathrm{T}}\left[\Sigma_{22}^{-1}+\Sigma_{22}^{-1} \Sigma_{21}\left(\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right)^{-1} \Sigma_{12} \Sigma_{22}^{-1}\right]\left(x_{2}-\mu_{2}\right)\right) \\
& \left.+\frac{1}{2}\left(\left(x_{2}-\mu_{2}\right)^{\mathrm{T}} \Sigma_{22}^{-1}\left(x_{2}-\mu_{2}\right)\right)\right] . \tag{24}
\end{align*}
$$

Eliminating some terms, we have

$$
\begin{align*}
p\left(x_{1} \mid x_{2}\right)= & \frac{1}{\sqrt{(2 \pi)^{n-n_{2}}}} \cdot \sqrt{\frac{\left|\Sigma_{22}\right|}{|\Sigma|}} . \\
& \exp \left[-\frac{1}{2}\left(\left(x_{1}-\mu_{1}\right)^{\mathrm{T}}\left(\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right)^{-1}\left(x_{1}-\mu_{1}\right)-\right.\right. \\
& 2\left(x_{1}-\mu_{1}\right)^{\mathrm{T}}\left(\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right)^{-1} \Sigma_{12} \Sigma_{22}^{-1}\left(x_{2}-\mu_{2}\right)+ \\
& \left.\left.\left(x_{2}-\mu_{2}\right)^{\mathrm{T}} \Sigma_{22}^{-1} \Sigma_{21}\left(\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right)^{-1} \Sigma_{12} \Sigma_{22}^{-1}\left(x_{2}-\mu_{2}\right)\right)\right] . \tag{25}
\end{align*}
$$

Rearranging the terms, we have

$$
\begin{align*}
p\left(x_{1} \mid x_{2}\right)= & \frac{1}{\sqrt{(2 \pi)^{n-n_{2}}}} \cdot \sqrt{\frac{\left|\Sigma_{22}\right|}{|\Sigma|}} \cdot \exp \left[-\frac{1}{2} .\right. \\
& {\left.\left[\left(x_{1}-\mu_{1}\right)-\Sigma_{12} \Sigma_{22}^{-1}\left(x_{2}-\mu_{2}\right)\right]^{\mathrm{T}}\left(\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right)^{-1}\left[\left(x_{1}-\mu_{1}\right)-\Sigma_{12} \Sigma_{22}^{-1}\left(x_{2}-\mu_{2}\right)\right]\right] } \\
= & \frac{1}{\sqrt{(2 \pi)^{n-n_{2}}}} \cdot \sqrt{\frac{\left|\Sigma_{22}\right|}{|\Sigma|}} \cdot \exp \left[-\frac{1}{2} .\right. \\
& {\left.\left[x_{1}-\left(\mu_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(x_{2}-\mu_{2}\right)\right)\right]^{\mathrm{T}}\left(\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right)^{-1}\left[x_{1}-\left(\mu_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(x_{2}-\mu_{2}\right)\right)\right]\right] } \tag{26}
\end{align*}
$$

where we used the fact that $\Sigma_{21}=\Sigma_{12}^{\top}$. The determinant of a block matrix is

$$
\left|\begin{array}{ll}
A & B \tag{27}\\
C & D
\end{array}\right|=|D| \cdot\left|A-B D^{-1} C\right|,
$$

such that we have for Σ that

$$
\left|\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \tag{28}\\
\Sigma_{21} & \Sigma_{22}
\end{array}\right|=\left|\Sigma_{22}\right| \cdot\left|\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right|
$$

with this and $n-n_{2}=n_{1}$, we finally arrive at

$$
\begin{align*}
p\left(x_{1} \mid x_{2}\right)= & \frac{1}{\sqrt{(2 \pi)^{n_{1}}\left|\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right|}} \cdot \exp \left[-\frac{1}{2}\right. \\
& {\left.\left[x_{1}-\left(\mu_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(x_{2}-\mu_{2}\right)\right)\right]^{\mathrm{T}}\left(\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right)^{-1}\left[x_{1}-\left(\mu_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(x_{2}-\mu_{2}\right)\right)\right]\right] } \tag{29}
\end{align*}
$$

which is the pdf of a multivariate normal distribution

$$
\begin{equation*}
p\left(x_{1} \mid x_{2}\right)=\mathcal{N}\left(x_{1} ; \mu_{1 \mid 2}, \Sigma_{1 \mid 2}\right) \tag{30}
\end{equation*}
$$

with mean $\mu_{1 \mid 2}$ and covariance $\Sigma_{1 \mid 2}$ given by 12 .

2 The Marginal Likelihood

- Occam's razor: "When you have two competing models that produce similar predictions, the simpler, the better." The same concept goes for GP.
- The marginal likelihood $p(\mathbf{y} \mid \boldsymbol{\theta})$ implements a version of Occam's razor.
- Marginal likelihood for Gaussian likelihood

$$
\begin{aligned}
p(\mathbf{y} \mid \boldsymbol{\theta}) & =\int p(\mathbf{y} \mid \mathbf{f}) p(\mathbf{f} \mid \boldsymbol{\theta}) d \mathbf{f} \\
& =\int \mathcal{N}\left(\mathbf{y} \mid \mathbf{f}, \sigma^{2} \mathbf{I}\right) \mathcal{N}(\mathbf{f} \mid 0, \mathbf{K}) d \mathbf{f} \\
& =\mathcal{N}\left(\mathbf{y} \mid 0, \sigma^{2} \mathbf{I}+\mathbf{K}\right)
\end{aligned}
$$

- Then

$$
\log p(\mathbf{y} \mid \boldsymbol{\theta})=\underbrace{-\frac{N}{2} \log (2 \pi)}_{\text {constant }} \underbrace{-\frac{1}{2} \log \left|\sigma^{2} \mathbf{I}+\mathbf{K}\right|}_{\text {complexity penalty }}-\underbrace{\frac{1}{2} \mathbf{y}^{\top}\left(\sigma^{2} \mathbf{I}+\mathbf{K}\right)^{-1} \mathbf{y}}_{\text {data fit }}
$$

2.1 The Marginal Likelihood Computation

- In practice, we should avoid computing determinants and inverses.
- Step 1: Compute Cholesky factorization of $\mathbf{C}=\sigma^{2} \mathbf{I}+K$ such that $C=\mathbf{L L}^{\top}$
- Step 2: Compute the log determinant as follows:

$$
\log |\mathbf{C}|=\log \left|\mathbf{L} \mathbf{L}^{\top}\right|=\log |\mathbf{L}|\left|\mathbf{L}^{\top}\right|=\log |\mathbf{L}|^{2}=2 \log |\mathbf{L}|=2 \sum_{n=1}^{N} \log \mathbf{L}_{n n}
$$

- Step 3: Compute quadratic term as follows

$$
\mathbf{y}^{\top} \mathbf{C}^{-1} \mathbf{y}=\mathbf{y}^{\top}\left(\mathbf{L} \mathbf{L}^{\top}\right)^{-1} \mathbf{y}=\mathbf{y}^{\top} \mathbf{L}^{-\top} \mathbf{L}^{-1} \mathbf{y}=\left(\mathbf{L}^{-1} \mathbf{y}\right)^{\top} \underbrace{\left(\mathbf{L}^{-1} \mathbf{y}\right)}_{=\mathbf{v}}=\mathbf{v}^{\top} \mathbf{v}
$$

- Step 4: Sum up components

$$
\log p(\mathbf{y} \mid \boldsymbol{\theta})=-\frac{N}{2} \log (2 \pi)-\frac{1}{2} 2 \sum_{n=1}^{N} \log \mathbf{L}_{n n}-\frac{1}{2} \mathbf{v}^{\top} \mathbf{v}
$$

- Note that we never compute the determinant or the inverse of \mathbf{C} directly.

3 Kernel Theory

3.1 Hilbert Space

- A vector space \mathcal{V} is a set of closed vectors under addition and scalar multiplication.
- If \mathcal{V} is equipped with a norm $\|\cdot\|_{\mathcal{V}} \in \mathbb{R}$, it is a norm space.
- A Hilbert space \mathcal{H} is a complete inner product space, with inner product $\langle.\rangle_{\mathcal{H}}$ and induced norm $\|x\|=\sqrt{\langle x, x\rangle_{\mathcal{H}}}$.

3.2 Kernel Function and Reproducing Kernel Hilbert Space (RKHS)

- A function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a kernel function if and only if there exists a Hilbert space \mathcal{H} and a map $\phi: \mathcal{X} \rightarrow \mathcal{H}$ such that:

$$
\begin{equation*}
k(x, y)=\langle\phi(x), \phi(y)\rangle \tag{31}
\end{equation*}
$$

for all $x, y \in \mathcal{X}$.

- Let $\phi: \mathcal{X} \rightarrow \mathbb{R}^{\mathcal{X}}$ and let us define:

$$
\begin{equation*}
k_{x}:=\phi(x)=k(x, .) \tag{32}
\end{equation*}
$$

Therefore, we have $k_{x}(y)=k(x, y)$.

- Let \mathcal{G} denote a vector space with span based on the images $\left\{k_{x} \mid x \in \mathcal{X}\right\}$, i.e.,

$$
\begin{equation*}
\left\{\mathcal{G}:=\sum_{i=1}^{m} \alpha_{i} k_{x_{i}} \mid \alpha_{i} \in \mathbb{R}, m \in \mathbb{N}, x_{i} \in \mathcal{X}\right\} \tag{33}
\end{equation*}
$$

- By the definition of the kernel function, the inner product on \mathcal{G} is defined as follows:

$$
\begin{equation*}
\left\langle k_{x}, k_{y}\right\rangle:=k(x, y) \tag{34}
\end{equation*}
$$

Recall that $k_{x}=k(x,$.$) , hence, \left\langle k_{x}, k_{y}\right\rangle=\langle k(x,),. k(y,)$.$\rangle .$

- Therefore, for any $f, g \in \mathcal{G}$, with $f=\sum_{i} \alpha_{i} k_{x_{i}}$ and $g=\sum_{j} \beta_{j} k_{y_{j}}$, we have:

$$
\begin{align*}
\langle f, g\rangle & =\left\langle\sum_{i} \alpha_{i} k_{x_{i}}, \sum_{j} \beta_{j} k_{y_{j}}\right\rangle \tag{35}\\
& =\sum_{i j} \alpha_{i} \beta_{j}\left\langle k_{x_{i}}, k_{y_{j}}\right\rangle \tag{36}\\
& =\sum_{i j} \alpha_{i} \beta_{j} k\left(x_{i}, y_{j}\right) \tag{37}
\end{align*}
$$

- To make \mathcal{G} a Hilbert space, we need to make it complete, i.e., ensure all Cauchy sequences converge.

Definition 1. Let \mathcal{H} be a Hilbert space of real function f defined on an index set \mathcal{X}. Then \mathcal{H} is called a reproducing kernel Hilbert space endowed with an inner product $\langle., .\rangle_{\mathcal{H}}$ if there exists a kernel function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ with the following properties:

1. For every $x \in \mathcal{X}, k_{x}(y)=k(x, y)$ as function of $y \in \mathcal{X}$ belongs to \mathcal{H}, and
2. k has the reproducing property.

- Reproducing property:

$$
\begin{align*}
\left\langle k_{x}, f\right\rangle & =\left\langle k_{x}, \sum_{i} \alpha_{i} k_{x_{i}}\right\rangle \tag{38}\\
& =\sum_{i} \alpha_{i}\left\langle k_{x}, k_{x_{i}}\right\rangle=\sum_{i} k\left(x, x_{i}\right)=f(x) \tag{39}
\end{align*}
$$

- Moore-Aronszajn theorem: Given a kernel, there is a unique RKHS, Given an RKHS, there is a unique kernel.

3.3 Representer Theorem

Settings:

- We are given kernel k and denote the corresponding RKHS at \mathcal{H}.
- We want to learn a linear function $f(\mathbf{x})$ from a finite data set $\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1}^{n}$

Theorem 1. Consider the risk minimization problem of the form:

$$
\begin{equation*}
\min _{f \in \mathcal{H}} \underbrace{R_{n}(\mathbf{y}, \mathbf{f})}_{\text {Empirical Risk }}+\underbrace{\lambda \Omega\left(\|f\|_{\mathcal{H}}\right)}_{\text {Regularizer }} \tag{40}
\end{equation*}
$$

where $\mathbf{f}=\left\{f\left(\mathbf{x}_{1}\right), \cdots, f\left(\mathbf{x}_{n}\right)\right\}, \mathbf{y}=\left\{y_{1}, \cdots, y_{n}\right\}$, and λ is a scaling parameter. Then 40 always has an optimal solution of the form:

$$
\begin{equation*}
f(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right) \tag{41}
\end{equation*}
$$

4 Spectral Kernel

4.1 Fourier Transforms

- Fourier transform $S(\omega)$ of a function $f(x)$,

$$
\begin{equation*}
S(\omega)=\int_{-\infty}^{\infty} f(x) \exp (-2 \pi i x \omega) d x \tag{42}
\end{equation*}
$$

- Inverse Fourier transform $f(x)$ of a spectral density $S(\omega)$

$$
\begin{equation*}
f(x)=\int_{-\infty}^{\infty} S(\omega) \exp (2 \pi i x \omega) d \omega \tag{43}
\end{equation*}
$$

- Euler's identity:

$$
\begin{equation*}
\exp (i x)=\cos x+i \sin x \tag{44}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\exp (\pm 2 \pi i x \omega)=\cos (2 \pi x \omega) \pm i \sin (2 \pi x \omega) \tag{45}
\end{equation*}
$$

4.2 Fourier Duals

Theorem 2. Bochner's theorem: Any stationary kernel $k: \mathbb{R}^{D} \rightarrow \mathbb{R}$ and its spectral density $S: \mathbb{R}^{D} \rightarrow \mathbb{R}$ are Fourier duals

$$
\begin{aligned}
k\left(x-x^{\prime}\right) \equiv k(\tau) & =\int_{-\infty}^{\infty} S(\omega) \exp \left(2 \pi i x \omega^{\top} \tau\right) d \omega \\
S(\omega) & =\int_{-\infty}^{\infty} k(\tau) \exp \left(-2 \pi i x \omega^{\top} \tau\right) d \tau
\end{aligned}
$$

5 Marginal Likelihood via Laplace Approximation

- Marginal likelihood to do model selection:

$$
\begin{equation*}
p(\mathbf{y})=\int p(\mathbf{y} \mid \mathbf{f}) p(\mathbf{f}) d \mathbf{f} \tag{46}
\end{equation*}
$$

- Let $\psi(\mathbf{f})=\log h(\mathbf{f})=\log (p(\mathbf{y} \mid \mathbf{f}) p(\mathbf{f}))$

$$
\begin{equation*}
\psi(\mathbf{f})=\log p(\mathbf{y} \mid \mathbf{f})-\frac{N}{2} \log 2 \pi-\frac{1}{2} \log |\mathbf{K}|-\frac{1}{2} \mathbf{f}^{\top} \mathbf{K}^{-1} \mathbf{f} \tag{47}
\end{equation*}
$$

- Second order Taylor approximation around the mode $\hat{\mathbf{f}}$

$$
\begin{equation*}
\psi(\mathbf{f})=\psi(\hat{\mathbf{f}})-\frac{1}{2}(\mathbf{f}-\hat{\mathbf{f}})^{\top} \mathbf{A}(\mathbf{f}-\hat{\mathbf{f}}) \tag{48}
\end{equation*}
$$

- Substituting back

$$
\begin{align*}
p(\mathbf{y}) \approx q(\mathbf{y})= & \int \exp \left(\psi(\hat{\mathbf{f}})-\frac{1}{2}(\mathbf{f}-\hat{\mathbf{f}})^{\top} \mathbf{A}(\mathbf{f}-\hat{\mathbf{f}})\right) d \mathbf{f} \tag{49}\\
= & \exp (\psi(\hat{\mathbf{f}})) \int \exp \left(-\frac{1}{2}(\mathbf{f}-\hat{\mathbf{f}})^{\top} \mathbf{A}(\mathbf{f}-\hat{\mathbf{f}})\right) d \mathbf{f} \tag{50}\\
= & \exp (\psi(\hat{\mathbf{f}}))(2 \pi)^{N / 2}\left|\mathbf{A}^{-1}\right|^{1 / 2} \tag{51}\\
= & \exp \left(\log p(\mathbf{y} \mid \hat{\mathbf{f}})-\frac{N}{2} \log 2 \pi-\frac{1}{2} \log |\mathbf{K}|-\frac{1}{2} \hat{\mathbf{f}}^{\top} \mathbf{K}^{-1} \hat{\mathbf{f}}\right) \\
& (2 \pi)^{N / 2}\left|\mathbf{A}^{-1}\right|^{1 / 2} \tag{52}
\end{align*}
$$

- Taking the \log of $q(\mathbf{y})$

$$
\begin{align*}
\log q(\mathbf{y})= & \log p(\mathbf{y} \mid \hat{\mathbf{f}})-\frac{N}{2} \log 2 \pi-\frac{1}{2} \log |\mathbf{K}|-\frac{1}{2} \hat{\mathbf{f}}^{\top} \mathbf{K}^{-1} \hat{\mathbf{f}} \\
& +\frac{N}{2} \log 2 \pi+\frac{1}{2} \log |\mathbf{A}|^{-1} \tag{53}\\
= & \log p(\mathbf{y} \mid \hat{f})-\frac{1}{2} \log |\mathbf{K}|-\frac{1}{2} \hat{\mathbf{f}}^{\top} \mathbf{K}^{-1} \hat{\mathbf{f}}+\frac{1}{2}\left|\mathbf{A}^{-1}\right| \tag{54}
\end{align*}
$$

- We can now use the fact that $\left|\mathbf{A}^{-1}\right|=|\mathbf{A}|^{-1}$

$$
\begin{equation*}
\log q(\mathbf{y})=\log p(\mathbf{y} \mid \hat{\mathbf{f}})-\frac{1}{2} \log |\mathbf{K}|-\frac{1}{2} \hat{\mathbf{f}}^{\top} \mathbf{K}^{-1} \hat{\mathbf{f}}-\frac{1}{2}|\mathbf{A}| \tag{55}
\end{equation*}
$$

- Recall that $\mathbf{A}=\mathbf{K}^{-1}+\mathbf{W}$

$$
\begin{equation*}
\log q(\mathbf{y})=\log p(\mathbf{y} \mid \hat{\mathbf{f}})-\frac{1}{2} \log |\mathbf{K}|-\frac{1}{2} \hat{\mathbf{f}}^{\top} \mathbf{K}^{-1} \hat{\mathbf{f}}-\frac{1}{2}\left|\mathbf{K}^{-1}+\mathbf{W}\right| \tag{56}
\end{equation*}
$$

- We optimize $\log q(\mathbf{y})$ using gradient based methods to choose hyperparameters.

6 Multi-output GP

6.1 Intrinsic coregionalization model (ICM): two-outputs

- Consider two output $f_{1}(\mathbf{x})$ and $f_{2}(\mathbf{x})$ with $\mathbf{x} \in \mathbb{R}^{d}$
- Assume the following generative model:

1. Sample from a GP $u(\mathbf{x}) \sim \mathcal{G} \mathcal{P}\left(0, k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right)$ to obtain $u^{1}(\mathbf{x})$
2. Obtain $f_{1}(\mathbf{x})$ and $f_{2}(\mathbf{x})$ by linearly transforming $u^{1}(\mathbf{x})$

$$
\begin{aligned}
& f_{1}(\mathbf{x})=a_{1}^{1} u(\mathbf{x}) \\
& f_{2}(\mathbf{x})=a_{2}^{1} u(\mathbf{x})
\end{aligned}
$$

6.2 ICM: covariance

- For a fixed value \mathbf{x}, we can group $f_{1}(\mathbf{x})$ and $f_{2}(\mathbf{x})$ in a vector $\mathbf{f}(\mathbf{x})$

$$
\mathbf{f}(\mathbf{x})=\left[\begin{array}{l}
f_{1}(\mathbf{x}) \\
f_{2}(\mathbf{x})
\end{array}\right]
$$

We refer to this as a vector-valued function.

- The covariance for $\mathbf{f}(\mathbf{x})$ is computed as

$$
\operatorname{cov}(\mathbf{f}(\mathbf{x}), \mathbf{f}(\mathbf{x}))=\mathbb{E}\left[\mathbf{f}(\mathbf{x}) \mathbf{f}\left(\mathbf{x}^{\prime}\right)^{\top}\right]-\mathbb{E}[\mathbf{f}(\mathbf{x})] \mathbb{E}\left[\mathbf{f}\left(\mathbf{x}^{\prime}\right)\right]^{\top}
$$

- We compute the term $\mathbb{E}\left[\mathbf{f}(\mathbf{x}) \mathbf{f}\left(\mathbf{x}^{\prime}\right)^{\top}\right]$

$$
\begin{aligned}
\mathbb{E}\left[\left[\begin{array}{ll}
f_{1}(\mathbf{x}) \\
f_{2}(\mathbf{x})
\end{array}\right]\left[\begin{array}{ll}
f_{1}\left(\mathbf{x}^{\prime}\right) & \left.f_{2}\left(\mathbf{x}^{\prime}\right)\right]
\end{array}\right]\right. & =\left[\begin{array}{ll}
\mathbb{E}\left[f_{1}(\mathbf{x}) f_{1}\left(\mathbf{x}^{\prime}\right)\right. & \mathbb{E}\left[f_{1}(\mathbf{x}) f_{2}\left(\mathbf{x}^{\prime}\right)\right. \\
\mathbb{E}\left[f_{2}(\mathbf{x}) f_{1}\left(\mathbf{x}^{\prime}\right)\right] & \mathbb{E}\left[f_{2}(\mathbf{x}) f_{2}\left(\mathbf{x}^{\prime}\right)\right]
\end{array}\right] \\
& =\left[\begin{array}{ll}
\left(a_{1}^{1}\right)^{2} \mathbb{E}\left[u_{1}(\mathbf{x}) u^{1}\left(\mathbf{x}^{\prime}\right)\right] & a_{1}^{1} a_{2}^{1} \mathbb{E}\left[u_{1}(\mathbf{x}) u^{1}\left(\mathbf{x}^{\prime}\right)\right] \\
a_{1}^{1} a_{2}^{1} \mathbb{E}\left[u_{1}(\mathbf{x}) u^{1}\left(\mathbf{x}^{\prime}\right)\right] & \left(a_{2}^{1}\right)^{2} \mathbb{E}\left[u_{1}(\mathbf{x}) u^{1}\left(\mathbf{x}^{\prime}\right)\right]
\end{array}\right] \\
& =\left[\begin{array}{ll}
\left(a_{1}^{1}\right) & a_{1}^{1} a_{2}^{1} \\
a_{1}^{1} a_{2}^{1} & \left(a_{2}^{1}\right)^{2}
\end{array}\right] \mathbb{E}\left[u^{1}(\mathbf{x}) u^{1}\left(\mathbf{x}^{\prime}\right)\right]
\end{aligned}
$$

- The term $\mathbb{E}[\mathbf{f}(\mathbf{x})]$ is computed as

$$
\mathbb{E}\left[\left[\begin{array}{l}
f_{1}(\mathbf{x}) \\
f_{2}(\mathbf{x})
\end{array}\right]\right]=\left[\begin{array}{l}
\mathbb{E}\left[f_{1}(\mathbf{x})\right] \\
\mathbb{E}\left[f_{2}(\mathbf{x})\right]
\end{array}\right]=\left[\begin{array}{l}
a_{1}^{1} \\
a_{2}^{1}
\end{array}\right] \mathbb{E}\left[u^{1}(\mathbf{x})\right]
$$

- Putting the terms together, the covariance for $\mathbf{f}(\mathbf{x})$ follows

$$
\left[\begin{array}{cc}
\left(a_{1}^{1}\right) & a_{1}^{1} a_{2}^{1} \\
a_{1}^{1} a_{2}^{1} & \left(a_{2}^{1}\right)^{2}
\end{array}\right] \mathbb{E}\left[u^{1}(\mathbf{x}) u^{1}\left(\mathbf{x}^{\prime}\right)\right]-\left[\begin{array}{l}
a_{1}^{1} \\
a_{2}^{1}
\end{array}\right]\left[\begin{array}{ll}
a_{1}^{1} & a_{2}^{1}
\end{array}\right] \mathbb{E}\left[u^{1}(\mathbf{x})\right] \mathbb{E}\left[u^{1}\left(\mathbf{x}^{\prime}\right)\right]
$$

- Defining $\mathbf{a}=\left[\begin{array}{ll}a_{1}^{1} & a_{2}^{1}\end{array}\right]^{\top}$ and $\mathbf{B}=\mathbf{a a}^{\top}$,

$$
\operatorname{cov}\left(\mathbf{f}(\mathbf{x}), \mathbf{f}\left(\mathbf{x}^{\prime}\right)\right)=\mathbf{a} \mathbf{a}^{\top} k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\mathbf{B}^{\top} k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)
$$

6.3 ICM: Observed data

- Given $\mathcal{D}_{1}=\left\{\left(\mathbf{x}_{i}, f_{1}\left(\mathbf{x}_{i}\right)\right) \mid i=1, \cdots, N\right\}$ and $\mathcal{D}_{2}=\left\{\left(\mathbf{x}_{i}, f_{2}\left(\mathbf{x}_{i}\right)\right) \mid i=1, \cdots, N\right\}$, then

$$
\left[\begin{array}{c}
\mathbf{f}_{1} \\
\mathbf{f}_{2}
\end{array}\right]=\left[\begin{array}{c}
f_{1}\left(\mathbf{x}_{1}\right) \\
\vdots \\
f_{1}\left(\mathbf{x}_{N}\right) \\
f_{2}\left(\mathbf{x}_{1}\right) \\
\vdots \\
f_{2}\left(\mathbf{x}_{N}\right)
\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
b_{11} \mathbf{K} & b_{12} \mathbf{K} \\
b_{21} \mathbf{K} & b_{22} \mathbf{K}
\end{array}\right]\right)=\mathcal{N}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right], \mathbf{B} \otimes \mathbf{K}\right)
$$

- The inversion rule: $(A \otimes B)^{-1}=A^{-1} \otimes B^{-1}$

7 Computational Complexity of GP Regression

- Data set with N observations, computing posterior for 1 test point:

$$
\begin{aligned}
\mu_{*} & =\mathbf{K}_{f_{*} f}\left(\mathbf{K}_{f f}+\sigma^{2} \mathbf{I}\right)^{-1} \mathbf{y} \\
\sigma_{*}^{2} & =\mathbf{K}_{f_{*} f_{*}}-\mathbf{K}_{f_{*} f}\left(\mathbf{K}_{f f}+\sigma^{2} I\right)^{-1} \mathbf{K}_{f_{*} f}^{\top}
\end{aligned}
$$

- Matrix-vector multiplication (mvm): for $\mathbf{A} \in \mathbb{R}^{N \times M}$ and $\mathbf{b} \in \mathbb{R}^{M}$, computing $\mathbf{A b}$ costs $\mathcal{O}(N M)$
- Matrix inverse: for $\mathbf{C} \in \mathbb{R}^{N \times N}$, computing $\mathbf{C}^{-1} \operatorname{costs} \mathcal{O}\left(N^{3}\right)$
- $\left(\mathbf{K}_{f f}+\sigma^{2} \mathbf{I}\right)^{-1} \mathbf{y}$ scales as $\mathcal{O}\left(N^{3}\right)$.

8 Approximately solving linear system

8.1 Matrix inverse as quadratic optimization

- Rewrite matrix inverse

$$
\mathbf{v}=\hat{\mathbf{K}}^{-1} \mathbf{y}, \quad \hat{\mathbf{K}}=\mathbf{K}+\sigma^{2} \mathbf{I}
$$

as a linear system:

$$
\hat{\mathbf{K}} \mathbf{v}-\mathbf{y}=0
$$

- Solve as a quadratic optimization problem:

$$
\mathbf{v}^{*}=\arg \min _{\mathbf{v}} \mathbf{v}^{\top} \hat{\mathbf{K}} \mathbf{v}-\mathbf{v}^{\top} \mathbf{y}
$$

8.2 Conjugate gradient

- Using conjugate gradient to solve the quadratic optimization

1. Iterative method
2. Each step is $\mathcal{O}\left(N^{2}\right)$
3. Recovers exact solution after N steps $\rightarrow \mathcal{O}\left(N^{3}\right)$
4. Approximate solution in much fewer steps: less steps.

8.3 Convergence and preconditioning

- Condition number: ratio of largest to smallest eigenvalue $\lambda_{\min }(\hat{\mathbf{K}}) / \lambda_{\max }(\hat{\mathbf{K}})$.
- High condition numbers: numerically unstable, slow convergence.
- Improve by preconditioning: Instead of $\hat{\mathbf{K}} \mathbf{v}-\mathbf{y}=0$, solve

$$
\mathbf{P}^{-1} \hat{\mathbf{K}} \mathbf{v}-\mathbf{P}^{-1} \mathbf{y}=0
$$

9 Low-rank approximation

- Recall GP marginal log-likelihood:

$$
\log p(\mathbf{y} \mid \mathbf{X})=\log \mathcal{N}\left(\mathbf{y} \mid 0, \mathbf{K}+\sigma^{2} \mathbf{I}\right)
$$

Assume \mathbf{K} to be low rank.

9.1 Approximation by subset

- Let's randomly pick a subset from training data: $\mathbf{Z} \in \mathbb{R}^{M \times Q}$
- Approximate the covariance matrix \mathbf{K} by \hat{K}

$$
\begin{aligned}
& \hat{\mathbf{K}}=\mathbf{K}_{z} \mathbf{K}_{z z}^{-1} \mathbf{K}_{z}^{\top} \in \mathbb{R}^{N \times N} \\
& \mathbf{K}_{z}=\mathbf{K}(\mathbf{X}, \mathbf{Z}) \in \mathbb{R}^{N \times M} \\
& \mathbf{K}_{z z}=\mathbf{K}(\mathbf{Z}, \mathbf{Z}) \in \mathbb{R}^{M \times M}
\end{aligned}
$$

- The log-likelihood is approximated by

$$
\log p(\mathbf{y} \mid \mathbf{X})=\log \mathcal{N}\left(\mathbf{y} \mid 0, \mathbf{K}_{z} \mathbf{K}_{z z}^{-1} \mathbf{K}_{z}^{\top}+\sigma^{2} \mathbf{I}\right)
$$

- Furthermore, apply Woodbury matrix identity:

$$
\begin{aligned}
& (U C V+A)^{-1}=A^{-1}-A^{-1} U\left(C^{-1}+V A^{-1} U\right)^{-1} V A^{-1} \\
& \left(\mathbf{K}_{z} \mathbf{K}_{z z}^{-1} \mathbf{K}_{z}^{\top}+\sigma^{2} \mathbf{I}\right)^{-1}=\sigma^{-2} \mathbf{I}-\sigma^{-4} \mathbf{K}_{z}\left(\mathbf{K}_{z z}+\sigma^{-2} \mathbf{K}_{z}^{\top} \mathbf{K}_{z}\right)^{-1} \mathbf{K}_{z}^{\top}
\end{aligned}
$$

- The complexity reduces to $\mathcal{O}\left(N M^{2}\right)$.

10 Variational Inference for Sparse GP

10.1 Inducing point methods: the joint model

- Goal: choose a set of inducing points s.t. it contains the same information as a full data set.
- The augmented model

$$
p(\mathbf{y}, \mathbf{f}, \mathbf{u})=p(\mathbf{y} \mid \mathbf{f}) p(\mathbf{f}, \mathbf{u})=p(\mathbf{y} \mid \mathbf{f}) p(\mathbf{f} \mid \mathbf{u}) p(\mathbf{u})
$$

- Recover the original model by marginalizing over u:

$$
p(\mathbf{y}, \mathbf{f})=\int p(\mathbf{y} \mid \mathbf{f}) p(\mathbf{f}, \mathbf{u}) d \mathbf{u}=p(\mathbf{y} \mid \mathbf{f}) \int p(\mathbf{f}, \mathbf{u}) d \mathbf{u}=p(\mathbf{y} \mid \mathbf{f}) p(\mathbf{f})
$$

- Using Gaussian conditional densities:

$$
\begin{aligned}
& p(\mathbf{y} \mid \mathbf{f})=\mathcal{N}\left(\mathbf{y} \mid \mathbf{f}, \sigma^{2} \mathbf{I}\right) \\
& p(\mathbf{f} \mid \mathbf{u})=\mathcal{N}\left(\mathbf{f} \mid \mathbf{K}_{n m} \mathbf{K}_{m m}^{-1} \mathbf{u}, \hat{\mathbf{K}}\right), \quad \hat{\mathbf{K}}=\mathbf{K}_{n n}-\mathbf{K}_{n m} \mathbf{K}_{m m}^{-1} \mathbf{K}_{m n} \\
& p(\mathbf{u})=\mathcal{N}\left(\mathbf{u} \mid 0, \mathbf{K}_{m m}\right)
\end{aligned}
$$

- Covariance of inducing points: $\left[\mathbf{K}_{m m}\right]_{i j}=k\left(z_{i}, z_{j}\right)$
- Cross-covariance between inducing points and training: $\left[\mathbf{K}_{m n}\right]_{i j}=k\left(z_{i}, x_{j}\right)$
- Covariance of training points: $\left[\mathbf{K}_{n n}\right]_{i j}=k\left(x_{i}, x_{j}\right)$

10.2 Variational Sparse GP

- Variational lower bound of a marginal likelihood:

$$
\begin{aligned}
\log p(\mathbf{y} \mid \mathbf{X}) & =\log \int_{\mathbf{f}, \mathbf{u}} p(\mathbf{y} \mid \mathbf{f}) p(\mathbf{f} \mid \mathbf{u}, \mathbf{X}, \mathbf{Z}) p(\mathbf{u} \mid \mathbf{Z}) \\
& \geq \int_{\mathbf{f}, \mathbf{u}} q(\mathbf{f}, \mathbf{u}) \log \frac{p(\mathbf{y} \mid \mathbf{f}) p(\mathbf{f} \mid \mathbf{u}, \mathbf{X}, \mathbf{Z}) p(\mathbf{u} \mid \mathbf{Z})}{q(\mathbf{f}, \mathbf{u})} \equiv \mathcal{L}
\end{aligned}
$$

- Defining the variational posterior as follows:

$$
\begin{aligned}
& q(\mathbf{f}, \mathbf{u})=p(\mathbf{f} \mid \mathbf{u}, \mathbf{X}, \mathbf{Z}) q(\mathbf{u}) \\
& q(\mathbf{u})=\mathcal{N}(\mathbf{u} \mid \mathbf{m}, \mathbf{S})
\end{aligned}
$$

- Thus, we have:

$$
\begin{aligned}
\mathcal{L} & =\int_{\mathbf{f}, \mathbf{u}} p(\mathbf{f} \mid \mathbf{u}, \mathbf{X}, \mathbf{Z}) q(\mathbf{u}) \log \frac{p(\mathbf{y} \mid \mathbf{f}) p(\mathbf{f} \mid \mathbf{u}, \mathbf{X}, \mathbf{Z}) p(\mathbf{u} \mid \mathbf{Z})}{p(\mathbf{f} \mid \mathbf{u}, \mathbf{X}, \mathbf{Z}) q(\mathbf{u})} \\
& =\langle\log p(\mathbf{y} \mid \mathbf{f})\rangle_{p(\mathbf{f} \mid \mathbf{u}, \mathbf{X}, \mathbf{Z}) q(\mathbf{u})}-\operatorname{KL}[q(\mathbf{u}) \mid p(\mathbf{u} \mid \mathbf{Z})]
\end{aligned}
$$

10.3 Likelihood

- Recall that $p(\mathbf{y} \mid \mathbf{f})=\prod_{i=1}^{N} p\left(y_{i} \mid f_{i}\right)$

$$
\begin{aligned}
\mathbb{E}_{q(\mathbf{u}, \mathbf{f})}[\log p(\mathbf{y} \mid \mathbf{f})] & =\mathbb{E}_{q(\mathbf{u}, \mathbf{f})}\left[\log \prod_{i=1}^{N} p\left(y_{i} \mid f_{i}\right)\right]=\sum_{i=1}^{N} \mathbb{E}_{q(\mathbf{u}, \mathbf{f})}\left[\log p\left(y_{i} \mid f_{i}\right)\right] \\
& =\sum_{i=1}^{N} \iint q(\mathbf{u}, \mathbf{f}) \log p\left(y_{i} \mid f_{i}\right) d \mathbf{u} d \mathbf{f} \\
& =\sum_{i=1}^{N} \iint p\left(f_{i} \mid \mathbf{u}\right) \mathcal{N}(\mathbf{u} \mid \mathbf{m}, \mathbf{S}) \log p\left(y_{i} \mid f_{i}\right) d \mathbf{u} d f_{i} \\
& =\sum_{i=1}^{N} \iint p\left(f_{i} \mid \mathbf{u}\right) \mathcal{N}(\mathbf{u} \mid \mathbf{m}, \mathbf{S}) d \mathbf{u} \log p\left(y_{i} \mid f_{i}\right) d f_{i}
\end{aligned}
$$

- Let $\int p\left(f_{i} \mid \mathbf{u}\right) \mathcal{N}(\mathbf{u} \mid \mathbf{m}, \mathbf{S}) d \mathbf{u} \approx q\left(f_{i}\right)=\mathcal{N}\left(f_{i} \mid \mathbf{K}_{i m} \mathbf{K}_{m m}^{-1} \mathbf{m}, \hat{K}_{i i}+\mathbf{K}_{i m} \mathbf{K}_{m m}^{-1} \mathbf{S K} \mathbf{K}_{m m}^{-1}\right) \mathbf{K}_{m i}$
- Thus,

$$
\mathbb{E}_{q(\mathbf{u}, \mathbf{f})}[\log p(\mathbf{y} \mid \mathbf{f})]=\sum_{i=1}^{N} \int q\left(f_{i}\right) \log p\left(y_{i} \mid f_{i}\right) d f_{i}
$$

11 State space GP

11.1 State space representation

- State space representation as a solution to a linear time-invariant stochastic differential equation (SDE):

$$
d \mathbf{f}=\mathbf{F} \mathbf{f} d t+\mathbf{L} d \beta
$$

where $\beta(t)$ is a vector of a Wiener process.

- Equivalently,

$$
\frac{d \mathbf{f}(t)}{d t}=\mathbf{F} \mathbf{f}(t)+\mathbf{L w}(t)
$$

The model consists of a drift matrix $\mathbf{F} \in \mathbb{R}^{m \times m}$, diffusion matrix $\mathbf{L} \in$ $\mathbb{R}^{m \times s}$, and spectral density matrix of the white noise process $\mathbf{Q} \in \mathbb{R}^{s \times s}$.

- The initial state is given by a stationary state $\mathbf{f}(0) \sim \mathcal{N}\left(0, \mathbf{P}_{\infty}\right)$ which satisfies

$$
\mathbf{F} \mathbf{P}_{\infty}+\mathbf{P}_{\infty} \mathbf{F}^{\top}+\mathbf{L} \mathbf{Q}_{c} \mathbf{L}^{\top}=0
$$

- The covariance function at the stationary state can be recovered by

$$
\kappa\left(t, t^{\prime}\right)= \begin{cases}\mathbf{P}_{\infty} \exp \left(\left(t^{\prime}-t\right) \mathbf{F}\right)^{\top} & t^{\prime} \geq t \\ \exp \left(\left(t^{\prime}-t\right) \mathbf{F}\right) \mathbf{P}_{\infty} & t^{\prime}<t\end{cases}
$$

- Spectral density function at the stationary state:

$$
S(\omega)=(\mathbf{F}+i \omega \mathbf{I})^{-1} \mathbf{L} \mathbf{Q}_{c} \mathbf{L}^{\top}(\mathbf{F}-i \omega \mathbf{I})^{-\top}
$$

- Discrete state space model:

$$
\begin{aligned}
& \mathbf{f}_{i}=\mathbf{A}_{i-1} \mathbf{f}_{i-1}+\mathbf{q}_{i-1}, \quad \mathbf{q}_{i} \sim \mathcal{N}\left(0, \mathbf{Q}_{i}\right) \\
& \mathbf{A}_{i}=\exp \left(\mathbf{F} \Delta t_{i}\right) \\
& \mathbf{Q}_{i}=\int_{0}^{\Delta t_{i}} \exp \left(\mathbf{F}\left(\Delta t_{i}-\tau\right)\right) \mathbf{L} \mathbf{Q}_{c} \mathbf{L}^{\top} \exp \left(\mathbf{F}\left(\Delta t_{i}-\tau\right)\right)^{\top} d \tau \\
& \Delta t_{i}=t_{i+1}-t_{i}
\end{aligned}
$$

- If the model is stationary:

$$
\mathbf{Q}_{i}=\mathbf{P}_{\infty}-\mathbf{A}_{i} \mathbf{P}_{\infty} \mathbf{A}_{i}^{\top}
$$

11.2 Sequential GP regression

- Also known as Kalman filter \rightarrow considers one data point at a time.
- Kalman prediction:

$$
\begin{aligned}
& \mathbf{m}_{i \mid i-1}=\mathbf{A}_{i-1} \mathbf{m}_{i-1 \mid i-1} \\
& \mathbf{P}_{i \mid i-1}=\mathbf{A}_{i-1} \mathbf{P}_{i-1 \mid i-1} \mathbf{A}_{i-1}+\mathbf{Q}_{i-1}
\end{aligned}
$$

- Kalman update:

$$
\begin{aligned}
& \mathbf{v}_{i}=y_{i}-\mathbf{H m}_{i \mid i-1} \\
& \mathbf{S}_{i}=\mathbf{H}_{i} \mathbf{P}_{i \mid i-1} \mathbf{H}^{\top}+\sigma_{n}^{2} \\
& \mathbf{K}_{i}=\mathbf{P}_{i \mid i-1} \mathbf{H}^{\top} \mathbf{S}_{i}^{-1} \\
& \mathbf{m}_{i \mid i}=\mathbf{m}_{i \mid i-1}+\mathbf{K}_{i} \mathbf{v}_{i} \\
& \mathbf{P}_{i \mid i}=\mathbf{P}_{i \mid i-1}-\mathbf{K}_{i} \mathbf{S}_{i} \mathbf{K}_{i}^{\top}
\end{aligned}
$$

- To condition all time-marginals on all data, run a backward sweep (Rauch-Tung-Striebel smoother):

$$
\begin{aligned}
& \mathbf{m}_{i+1 \mid i}=\mathbf{A}_{i} \mathbf{m}_{i \mid i} \\
& \mathbf{P}_{i+1 \mid i}=\mathbf{A}_{i} \mathbf{P}_{i \mid i} \mathbf{A}_{i}^{\top}+\mathbf{Q}_{i} \\
& \mathbf{G}_{i}=\mathbf{P}_{i \mid i} \mathbf{A}_{i}^{\top} \mathbf{P}_{i+1 \mid i}^{-1} \\
& \mathbf{m}_{i \mid n}=\mathbf{m}_{i \mid i}+\mathbf{G}_{i}\left(\mathbf{m}_{i+1 \mid n}-\mathbf{m}_{i+1 \mid i}\right) \\
& \mathbf{P}_{i \mid n}=\mathbf{P}_{i \mid i}-\mathbf{G}_{i}\left(\mathbf{P}_{i+1 \mid n}-\mathbf{P}_{i+1 \mid i}\right) \mathbf{G}_{i}^{\top}
\end{aligned}
$$

